

Integrated Spectrum Management System

ISOC for Windows

Application Programming Interfaces

Last Updated: 2/19/2013 9:40:00 PM

ISOC for Windows Page i

ISOC for Windows APIs Table of Contents

ISOC for Windows APIs Table of Contents ... i

ISOC for Windows Application Programming Interfaces ... 1

1. ISOC Server API .. 3

1.1. Operations Overview .. 3

1.2. Instrument Commanding .. 4

1.3. Command and Data Packets ... 4

1.4. Data Formats .. 5

1.5. ISOC Server Command Set .. 7

1.6. A Typical Client-Server Session .. 18

1.7. Rate Adaptive Algorithm ... 21

1.8. A Simple Example .. 21

2. ISOC Background Scheduler Server API .. 24

2.1. Schedule Entries ... 24

2.2. Input Files and Ranges ... 25

2.3. Output Files .. 25

2.4. Background Scheduler Command Set .. 26

2.5. A Simple Example .. 31

3. ISOC Instrument Control ... 33

3.1. Modes of Operation .. 33

3.2. A Web Script Example ... 35

3.3. Quick Reference ... 42

3.4. Methods Reference ... 44

3.5. Properties Reference ... 45

3.6. Events Reference .. 54

Appendix A. Authentication .. 56

A.1 Authentication Algorithm .. 56

A.2 Client Authentication ... 57

A.3 Server Authentication .. 57

A.4 Authentication Registry Key.. 57

Appendix B. Length-Prefixed Transactions .. 58

B.1 The recvwithlength Function ... 58

B.2 The sendwithlength Function ... 58

B.3 The sendstr function ... 59

ISOC for Windows Page 1

ISOC for Windows Application Programming Interfaces

The Integrated Spectrum Observation Center is a suite of applications providing flexible remote

access to instrument suites. Several application components are controlled via interfaces that are

sufficiently generic to be used from external (user-developed) applications.

The following diagram demonstrates the components of the ISOC for Windows system:

Server Computer

Client Computer

Main Server

ISOCSVC.EXE

Background Scanner

ISOCSCAN.EXE

Instrument Bank

Client Application

ISOCNT.EXE

Instrument Control

ISOCInstrument.DLL

Scheduler Application

ISOCSCHD.EXE

Server Manager

ISOCMGR.EXE

ICOM Calibrator

ICOMCAL.EXE

Rotator Calibrator

ROTCAL.EXE

Sound Mixer

MULTISND.EXE

For a more detailed description of the role and operation of these components, please refer to the

ISOC for Windows Internal Software Architecture manual.

ISOC for Windows Page 2

Three of the components seen in this diagram offer an API that can be utilized by third-party

applications.

The ISOCSVC.EXE server application represents the core of the ISOC system. It provides

remote access to all ISOC instruments, and provides additional functionality as well, including

support for the switch matrix, remote control power bar, background command execution,

processing of graphical traces, digital audio, and more.

The ISOCInstrument.DLL is an ActiveX control for use within Windows applications and Web

scripts. It provides a simple graphical interface to the ISOCSVC.EXE server, including the

ability to display instrument traces, process background command results, and play back digital

audio. An ISOC client application would normally use the ISOCInstrument.DLL instead of

accessing the ISOCSVC.EXE server directly.

The ISOCSCAN.EXE is another server application that performs scheduled background scans.

Presently it can perform background level scans utilizing the ESN or ICOM radio receivers, and

background audio recording.

This document provides a (necessarily incomplete, since the ISOC suite is still a work-in-

progress) quick reference for interfacing with these key ISOC components.

Preliminary: All information contained within this document is preliminary. This

document is released to provide advance information to those who wish to

consider utilizing ISOC components within their applications. However, the

programs and components described in this document are under development

themselves, and thus they are subject to change.

ISOC for Windows Page 3

1. ISOC Server API

The main ISOC server, ISOCSVC.EXE, offers a control interface via a TCP socket; normally, on

port 25449. Applications can connect to this socket, perform simple authentication, and execute

any of the control functions listed in this section, or perform interactive communication with

instruments that the ISOC server can control.

Note: Accessing the ISOCSVC service directly from your code is not

recommended. When possible, use the ISOCInstrument ActiveX control (see

section 3) for the purpose of communicating with the service.

The purpose of the ISOCSVC service is to provide a reliable means to access remote

instrumentation, perform one-off and repetitive commands, and obtain results at high efficiency.

Commanding the ISOCSVC service is performed through a TCP socket, using human-readable

command strings. Depending on the nature of the command, responses may be either human-

readable or binary.

The ISOCSVC service is protected against unauthorized access using a simple authentication

scheme. The authentication algorithm is encoded in the ISOCDev.dll library (see Appendix A.)

After authentication bytes are successfully exchanged, the ISOCSVC service is ready to receive

commands. These commands are used to query the service’s status, obtain control of an

instrument, set up secondary channels of communication, send data to, or receive data from the

instrument, and terminate the connection.

1.1. Operations Overview

Typically, an application utilizes the ISOCSVC service as follows:

1. Connect to the ISOCSVC service

The application creates a TCP socket and connects to the ISOC server on the designated

port number (port 25449). If the connection is successful, it performs authentication.

2. Obtain a list of instruments

The application issues the appropriate command and reads a list of instruments present on

the server. (This is used, for instance, to present a list of selections to the user.)

3. Obtain control of an instrument

The application requests control of the desired instrument. If the request is completed

successfully, a two-way data path is established between the application and the

requested instrument. It is also important to maintain activity on the communication

channel by issuing special “keep-alive” commands; otherwise, the server will

automatically terminate inactive connections.

ISOC for Windows Page 4

4. Set up background channels of communication

This step is optional. The client application may instruct the server to perform periodic

commands and send the results to the designated UDP port on the client. A similar

mechanism is used for obtaining traces that represent the content of the graphical display

on certain instruments, and for obtaining digital audio.

5. Terminate the connection

The application asks the server to terminate the connection or it simply closes the socket,

causing the server to treat it as a “hang up” event.

There can be several TCP sockets open between a client and a server. One TCP socket can be

used to control at most one instrument at a time. Thus, controlling multiple instruments requires

the simultaneous use of multiple TCP sockets, which is best implemented using a multi-threaded

approach.

1.2. Instrument Commanding

The ISOC server contains no instrument-specific functionality. (Exceptions include ICOM

calibration information, antenna rotator calibration information, and support for the remote

control power bar and switch matrix.) Instruments are commanded using instrument-specific

commands that are described in each instrument's programming manual.

The ISOC server provides two mechanisms for communicating with an instrument: commands

and queries. A convention borrowed from HP-IB is used to distinguish between the two. A string

from the client is interpreted as a command if it terminates with a semicolon, and a query if it

terminates with a question mark. In case of a query, the server attempts to read a response from

the instrument.

This convention works well with instruments on the HP-IB bus. However, if fails in case of

instruments on the serial port, for instance, that may send unsolicited data. Therefore, the server

also provides a mechanism to communicate these unsolicited responses to the client.

In addition to directly executed commands, the server also provides a means to run commands in

the background, at scheduled intervals.

1.3. Command and Data Packets

Although the ISOC server command set consists of human readable command words and

parameters, information is often exchanged in binary form. For this reason, a simple length-

prefixed protocol is used for sending and receiving data. All transmissions, be it commands from

the client, or replies from the server, are prefixed with a four-byte word indicating the length of

the following transmission. Because if this protocol, it is not possible to exercise the ISOC server

from a simple TCP socket client such as a telnet client program.

ISOC for Windows Page 5

1.4. Data Formats

1.4.1. Commands

All commands sent by the client to the server are length-prefixed ASCII strings terminated by

the newline (‘\n’) character. The length is encoded as a four-byte (LSB) integer. For more

information, see Appendix B.

Commands that are processed by the server itself are prefixed by the forward slash (‘/’)

character. Any command line that does not begin with a forward slash is interpreted as a

command for the instrument to which the socket in use has been connected to.

Commands that are sent to an instrument must terminate with the semicolon (‘;’) or question

mark (‘?’) character. Due to the nature of the GPIB bus (used for connecting to most

instruments) an application program is required to know in advance when to read data from the

instrument. A de facto standard for GPIB instruments is to use the question mark character to

indicate a query (which produces output), as distinguished from ordinary commands (terminated

by a semicolon) which do not produce output. Although many instruments do not actually

require that the question mark or semicolon be appended, the ISOC service does require this in

order to distinguish queries from commands that produce no output.

1.4.2. Server Responses

All responses sent by the server to the client are length-prefixed: a four-byte (LSB) integer

indicates the number of bytes that follow. Appendix B describes a simple set of Windows inline

functions that implement length-prefixed data exchange on a socket.

Server error messages follow a simple format: a forward slash, followed by a two-digit error

code, a colon, and an English-language description of the error. The two-digit code shall assist

applications in evaluating the error condition. It is not necessary for an application to use, or

display, the error description.

1.4.3. Trace Data

Trace data is presented as a length-prefixed block of one-byte or two-byte unsigned integers.

How the server extracts trace data from instrument output is explained below, where the /T

command is described. If the trace vertical resolution is less than 256, the trace is represented as

single-byte values; otherwise, two-byte values are used. In any case, a trace data block is length-

prefixed and contains the following elements:

Byte 0: Trace number (1-3)

Bytes 1-4: Packed date-and-time

Bytes 5-6: Trace width

Bytes 7-8: Trace height

Bytes 9...: Trace values

The trace header is defined in sendrecv.h as follows:

ISOC for Windows Page 6

typedef struct _PACKEDDATETIME

{

unsigned long nYear:6; // 1998-2061 (Y2062 problem, hehe)

unsigned long nMonth:4;

unsigned long nDay:5;

unsigned long nHour:5;

unsigned long nMin:6;

unsigned long nSec:6;

} PACKEDDATETIME;

typedef struct _TRACEHDR

{

 PACKEDDATETIME pdtStamp;

 unsigned short nHRes;

 unsigned short nVRes;

} TRACEHDR;

Conversion of packed date-time values is assisted by two helper functions, also declared in

sendrecv.h:

inline void SystemTimeToPackedTime(SYSTEMTIME *pst, PACKEDDATETIME *ppdt);

inline void PackedTimeToSystemTime(PACKEDDATETIME *ppdt, SYSTEMTIME *pst);

Trace data blocks are sent to the designated UDP port on the client computer, as specified by the

/U command. The trace data block always contains one complete trace (i.e., one screenful.)

Note that the same format is used to send the output of the background command (specified

using /B) to the client. In this case, the trace number (byte 0) is set to zero, and the trace values

are replaced by the output of the command that is specified via /B.

A client application that processes input on the UDP port would first examine byte 0 to

determine whether the data represents a trace or the output of a background command. It would

then extract the date and time stamp, and save it for use in subsequent /K (keepalive) commands.

1.4.4. Audio Data

Audio data is sent only when the client connects to a special “audio” instrument. In this case, no

background commands or traces are processed. However, audio is continuously read from the

server’s audio hardware and processed, compressed as needed, and sent to the client’s UDP port.

An audio data block is prefixed by a six-byte header:

Byte 0: Trace number (always 0)

Bytes 1-4: Packed date-and-time

Byte 5: Flags

Bytes 6...: Audio stream

Presently, the following bit flags (byte 5) are defined:

Bit 0: Set to true if any form of compression is in use

Bit 1: 2X compression in use

ISOC for Windows Page 7

Bit 2: GSM compression is in use

Bit 3: Channel A (left) data present in data block

Bit 4: Channel B (right) data present in data block

Audio data consists of an optionally compressed 8-bit PCM stream, sampled at 8000 kHz. Two

forms of compression are used: 2X compression effectively reduces the sample rate to 4000 kHz

(at a significant loss of quality), whereas GSM compression applies a standard GSM

compression algorithm at moderate data loss. Normally, 2X compression is not required, as GSM

compression allows a single audio channel to be transmitted over an ordinary modem connection

with enough bandwidth left over for trace data and instrument control.

1.5. ISOC Server Command Set

Below is a complete list of the commands that the ISOC server accepts.

NOTE: syntactical elements are shown with a fixed-pitch font. Syntactical

elements in italics are variable elements; e.g., parameters supplied by the client, or

data provided by the server. Syntactical elements enclosed in square brackets are

optional.

/1:command-string

Treat command-string as a single command and send it to the instrument. If the string ends

with a question mark, wait for data from the instrument.

The server normally parses a command that is sent to the instrument, and treats any semicolons

that are part of the string as command separators. I.e., the string "command1;command2;" is

sent to the instrument in two separate transactions. The /1 command makes it possible to send

such compound commands to the instrument all at once. Not all instruments can process

multiple commands this way, but for those that do, this syntax may provide a small

performance gain. Additionally, the syntax also permits the use of commands that have

semicolons embedded in them.

/aidentifier[:db:mode]

Request calibration data for the instrument identified by identifier. This command is used to

obtain a block of binary data that represents calibration information for the selected instrument.

Calibration information in the present implementation is available for ICOM receivers and the

antenna rotator instrument.

The db and mode parameters are optional and are used with ICOM receivers only. ICOM

receivers have separate calibration data sets with 1dB, 2dB, and 3dB accuracy for each of the

instrument's various operating modes (demodulator+bandwidth setting.)

In response to this query for an ICOM instrument, the server sends one or more digit

sequences, each consisting of 12 decimal digits, followed by 232 hexadecimal digits. Each of

these sequences represents a calibration range. The first 12-digit number is the upper frequency

limit of the range (the lower limit is either 0 or the upper limit of the previous range; ranges are

ISOC for Windows Page 8

listed in incremental order.) The 232 hexadecimal digits represent 116 one-byte numbers; these

represent the ICOM signal levels (in ICOM units) corresponding with -10 to +105 dBm.

The response antenna rotators is a fixed-length 32-byte binary sequence representing 16 2-byte

numbers in big-endian (Intel) encoding. The sequence contains the following parameters:

Azimuth offset (in tenth of degrees)

Azimuth resolution

Azimuth minimum (hardware)

Azimuth minimum (software)

Azimuth maximum (hardware)

Azimuth maximum (software)

Azimuth minimum

Azimuth maximum

The same set of parameters is then repeated for elevation.

The hardware minima and maxima represent the absolute limits of the instrument (in degrees).

Software minima and maxima are site specific limits that should not be exceeded. The

'minimum' and 'maximum' values are calibration parameters; they correspond with the

hardware minimum and maximum in instrument units. The instrument is assumed to have a

linear response within these limits.

This command may return the following error if no calibration data is available:

/31: No calibration data

/binterval,command-string

Execute command-string every interval milliseconds. The string may contain one or more

commands to be sent to the instrument. Commands are terminated by a question mark or

semicolon; a question mark indicates that the instrument is to be polled for a response, which is

then communicated to the client via the UDP interface.

The command may respond with the following error indications:

/08:not connected

/15:insufficient memory

This command can also be used without parameters, to query the current background command

setting.

/cinstrument-identifier

Connect to the instrument associated with instrument-identifier. If the command is not

successful, the following errors may appear:

/02:connect failed

/09:already connected

ISOC for Windows Page 9

/10:in use

/13:Cannot create UDP thread

/14:unknown instrument

/31:no memory

/d

Disconnect the current instrument without terminating the client-server session. May report the

following errors:

/03:disconnected

/08:not connected

/12:disconnect failure (warning only)

/epeername

Set the peer name (i.e., tell server the name under which the client wishes to be known.)

/fcID

Report audio channel. If successful, the command returns a line containing a single number (0

or 1) of the audio channel associated with the instrument identified by ID. May return the

following error:

/14:unknown instrument

/fdID

Get the default audio input tuned with the device identified by ID. If successful, the command

returns a single line identifying the tuned device. May also return the following error:

/19: no default input

/fsID

Report audio device. If successful, the command returns a line containing a single number

identifying the device associated with the instrument identified by ID. May return the

following error:

/14:unknown instrument

/gn

Add or don’t add GPS header. GPS header is added if n = 1, not added otherwise.

/h

Report monitor center name. If no monitor center name has been configured on the server,

returns the following error:

/32:unknown monitor center

ISOC for Windows Page 10

/i

Report the interface identifier for the currently connected instrument. Most useful in case the

same instrument is accessible via different interface types (e.g., RS-232 vs. GP-IB), utilizing a

different command set.

If there is no current instrument, the following error is reported:

/08:not connected

/mcommand

Usage logging commands.

/jc

Query list of valid reason codes, as configured by this server’s administrator. The result is a

single line of text containing a tab-deliminted list of English/French reason codes with a

vertical bar character (‘|’) separating the two. The string is terminated by a newline character.

/jluser-ID:reason-code:GDOC

Set the user identifier, reason code, and GDOC code for usage tracking.

/jxlog-text

Logs arbitrary text in the usage tracking log. Used by ISOCSCAN.EXE.

/ktimestamp

Keep-alive. This command is used to reset the server's command loss timer. The server uses

the command loss timer to determine if it is necessary to reduce the data rate, and also to

detect, and terminate, a 'hung' connection. The timestamp parameter to /K is an 8-digit

hexadecimal value indicating a timestamp. A value of zero is equivalent to the current time,

and allows the command loss timer to be reset. Without regular keep-alive packets or other

traffic from the client, a server will always shut down a connection that has been idle too long.

Because /K commands are issued by clients frequently, they are not usually logged, unless

their logging is enabled by the /- command.

/l

List instruments. This command lists all instruments that the server knows about in the

following format:

/98:identifier|type|English-name|French-name|

The part between the semicolon and the terminating vertical bar (both inclusive) is repeated

once for each instrument. New newline or carriage return characters are inserted.

ISOC for Windows Page 11

The fields are as follows:

 Instrument identifier (an arbitrary string)

 Instrument type (presently one of ADV, ESN, HPS, SND, or UNK)

 English instrument name

 French instrument name

 Instrument user (DNS name of computer, if any, that is presently using the instrument.)

For instance, the server may return the following string, listing four instruments of which one

(HPS) is in use (newlines have been inserted for formatting purposes, and are not part of the

server’s response):

/98:ADV|ADV|Advantest Spectrum Analyzer|Analyseur de spectre ADVANTEST|

:ESN|ESN|Rohde&Schwarz ESN Test Receiver|Récepteur ESN R&S|

:HPS|HPS|Hewlett-Packard Spectrum Analyzer|Analyseur de spectre|localhost

:SND|SND|Windows Multimedia Sound|Services de son digitalisés|

/mcommand

Matrix commands. Several subcommands are available to control matrix operation.

The virtual switch matrix model provided by the server implements the concept of an input

signal source. Each instrument may have one ore more inputs associated with it; when the

server is configured via the ISOC server configuration tool, these inputs and the corresponding

switch matrix commands are listed.

The server also provides the concept of an input connector. This is used, for instance, with

ICOM receivers, some of which have two or three input connectors in the back, to be used for

different frequency ranges. On these instruments, in addition to selecting a signal source, a

client program must also select the connector to which this signal source will be connected.

The server also supports audio switching. In this case, the "instrument" is the audio card on the

server. Since this card has two inputs (the left and right channels of the stereo signal) support is

provided in the command set to allow these two to be managed separately.

/m?

Query matrix availability. The server responds with a 1 if the switch matrix is available, and

a 0 if it isn't. Matrix availability is checked in real time; in other words, if a switch matrix is

connected to the system, or if one that has been previously connected is powered up, it is not

necessary to restart the server.

/mn

Connect to connector port n. This command is valid for instruments with multiple connectors

defined. In response to this command, the server sends to the switch matrix the command

string that is associated with the specified connector.

ISOC for Windows Page 12

/mcinput[:c]

Connect signal source identified by input to the current instrument, or disconnect from all

inputs if input is a blank string. The optional c parameter is used to select channel A or

channel B for the audio input device.

This command may report the following errors:

/17: undefined input

/20: input in use

/22: no input connected

/23: no matrix

If there is no error, the server responds with the identifier of the signal source that was just

connected to the instrument, or the number 0 to indicate that all signal sources have been

disconnected.

/md

List default input. Associated with each instrument is a default (hardwired) input that

represents the signal the instrument receives when no switch matrix is available, or when the

instrument has no switch matrix settings.

The default input is reported in the following format:

identifier|English-name|French-name

/mi

List inputs for the current instrument. For the currently connected instrument, all available

inputs are listed in the following format:

identifier|English-name|French-name[|user]

If the instrument has no inputs, the following error is reported:

/24: Instrument has no inputs

/mp

List connector port parameters for the current instrument. Connector ports are listed in the

following format:

Upper-frequency|identifier|English-name|French-name

/ms

Send notification to the current user of the instrument that a matrix position is requested. No

error returns.

ISOC for Windows Page 13

/mtinput-identifier

Show tune-with association for the specified input. Each input may optionally have a "tune-

with" association with an instrument. This implies that when this input is selected for a virtual

instrument, the "tune-with" associated instrument should be tuned when the user changes

tuning settings. For instance, if the intermediate frequency (IF) output of a receiver is selected

as the input of a spectrum analyzer, the spectrum analyzer should be tuned to a fixed

frequency, and any tuning actions by the user should be transmitted to the receiver instead of

the spectrum analyzer.

The tune-with associated instrument and parameters are listed in the following format:

Instrument;swap;frequency

The swap parameter is 1 if the signal is 'reversed' in the frequency domain, as it is done on the

IF output of ESN receivers, for instance. The frequency parameter is the signal frequency (e.g.,

the intermediate frequency of a receiver) that the current instrument should be tuned to if this

input is connected.

This command may produce the following messages if an error occurs:

/17:undefined input

/18: no tune-with association

/myinput-identifier

Show the antenna type name associated with the specified input. Standardized antenna type

names are recorded during background scanning sessions in the standard format output file.

/n[f]

Query the long name of the instrument. Default response is the English name; the character F

can be used to request the French name. If no device is presently connected, the following error

is reported:

/08:not connected

/o

Request obstruction list. Obstruction lists are site-specific lists of obstructions that are used in

the present implementation with the antenna rotator instrument. The obstruction list is provided

in the following format:

Obstruction-name-1|Parameter-block-1|[Name-2|Pblock-2|...]

The parameter block for each obstruction consists of eight hexadecimal digits, representing 2

4-digit numbers. Each of the numbers is represented using big-endian byte encoding (e.g.,

1000dec=3E8hex is encoded as E803.) These two numbers represent the start and end angle of

the obstruction in tenth of degrees.

ISOC for Windows Page 14

/pcommand-code

Power management. Powers up or down the instrument that the client is presently connected

to. The command-code part is a single character that may have the following values:

0: Off

1: On

2: Boot (power cycle)

?: Status query

If the command fails, one of the following errors is reported:

/10:in use

/14:unknown instrument

/25:no power settings

/26:no power bar

/rchannel[threshold,file-name]

Record audio. This command is applicable only in the case of audio devices. Once the

command is issued, recording commences with an audio threshold value threshold, with the

audio stream saved in Windows .WAV file format to file-name. The command confirms the

successful commencement of audio recording with the following reply:

/00:OK

If no device is presently connected, the following error is reported:

/08:not connected

/sflags

Set sound transmission switches to flags. The value flags is a bitwise combination of the

following values:

1: Compress the stream

2: Use rate-halving compression

4: Use GSM compression

8: Enable left audio channel

16: Enable right audio channel

If no instrument is presently connected, or if the instrument is not a sound instrument, the

command returns the following error:

/08:not connected

/sXinstrument-identifier

Send notification to the current user of the instrument that the instrument is requested. X can be

the character C (indicating a request of interactive use) or the character B (indicating a request

ISOC for Windows Page 15

for background scanning use.) Currently, clients will display a message when a background use

request is received, but not otherwise.

The command does not return a response.

/tID,interval,offset,type,i-width,i-height,t-width,t-height,mode,command

Trace command. This command instructs the server to periodically send command to the

instrument to obtain a block of data representing a graphical trace, process this trace, and

communicate the result to the client.

The command utilizes the following parameters:

ID: Trace identifier. The server supports up to three traces. For instance, whereas one trace

may show instantaneous updates (clear write) the other two may be configured to show the

signal minimum and maximum.

interval: The repeat interval (in milliseconds) with which the trace command will be re-

executed.

offset: The trace is assumed to be a binary data block that is part of the instrument's response to

the trace command. This parameter determines how many bytes are to be ignored (header

bytes).

type: The type of the trace data that is reported by the instrument. 0 indicates byte data; 1

indicates big-endian words; 2 indicates little-endian words (i.e., word data in reverse byte

order.)

i-width: The width of the trace as reported by the instrument (i.e., the number of trace data

points.)

i-height: The height of the trace as reported by the instrument

t-width: The desired width of the trace to be sent to the client

t-height: The desired height of the trace to be sent to the client

mode: The resampling mode parameter determines how N data points in the trace reported by

the instrument are converted into M data points for transmission to the client. For every point

in the target set, there exist one or more (k) points in the source set. A mode parameter of 1

means "sample" mode; we pick the one data point in the source set that is closest to the desired

horizontal position in the target set. A mode parameter of 2 means that the k points in the

source set are averaged. A mode parameter of 3 means that their minimum is computed; 4

means maximum. Finally, a mode parameter of 0 ("binary bins") means that for every pair of

points in the target set, the minimum and maximum are identified in the source set, and they

are assigned to the target points in the (left-to-right) order in which they appear in the source

set.

ISOC for Windows Page 16

For example, if the source set contains six data points and the target set contains two data

points, these five algorithms yield the following values:

Source 25 15 11 9 2 1

0. Minimax 25 1

1. Sample 15 2

2. Average 17 4

3. Minimum 11 1

4. Maximum 25 9

The trace command may report the following errors in case of failure:

/08:not connected

/11:syntax error

/15:insufficient memory

/16:not supported

Here is a specific example demonstrating the use of this command. Suppose we are

communicating with an HP8594E Spectrum Analyzer. This analyzer can be configured to send

trace data in the form of 400 two-byte values, each representing a value between 0 and 8000,

using the following instrument commands:

 TDF A;MDS W;

After this command is sent, we can obtain traces from the instrument using the TRA?

command. The trace data begins on the fourth byte of the data block received in response to

this command. If we wish to obtain the trace every 150 milliseconds in the form of 200 1-byte

values, we need to issue the following command to the ISOC server:

/T1:150,4,2,400,8000,200,200,0,TRA?

The format of the resulting trace data that is sent to the client’s UDP port is discussed in

section 1.4.3.

/uport-number

Instruct the server to send UDP packets to port port-number on the client. Use of the /U

command is required before the client can receive background command results, graphical

trace updates, or streaming audio.

If no instrument is currently connected, the following error is reported:

/08:not connected

/vcommand

Manage server-side variables. Allows the client to set, and read the values of, variables stored

by the server. These parameters are persistent and stored in the Registry. Several subcommands

are available.

ISOC for Windows Page 17

/vrvarname

Retrieve the value of the variable identified by varname. May report the following errors:

/08:not connected

/15:insufficient memory

/35:error accessing variables

/36:variable not found

/vsvarname:value

Sets the value of the variable identified by varname to value. May report the following errors:

/08:not connected

/11:syntax error

/15:insufficient memory

/35:error accessing variables

/36:variable not found

/wtimeout

Change timeout period. This command is especially relevant with instruments controlled via

the GP-IB interface. By default, the ISOC uses a 1 second timeout when reading from the

instrument; for commands that take a long time to execute (e.g., calibration), the client may opt

to change this timeout value before issuing the command. The timeout value is in milliseconds.

If no instrument is presently connected, issuing this command results in the following error:

/08:not connected

/x

Disconnect the current instrument and terminate the client-server connection. May report the

following errors:

/03:disconnected

/04:goodbye

/08:not connected

/12:disconnect failure (warning only)

/zcommand

Set line terminator string. Used by the TCP/IP and RS-232 drivers. Several subcommands are

available.

/zrstring

Sets the line terminator string to string for received data. The server will use this string to

determine when a logical line ends in the data stream received from the instrument. The

ISOC for Windows Page 18

standard ‘C’ notation is accepted for the carriage return (‘\r’) and line feed (‘\n’) symbols. No

error returns. Example usage:

/zr\r\n

/zsstring

Sets the line terminator string to string for data to be sent to the instrument. The server will

use this string to terminate lines of command sent to the instrument. The standard ‘C’ notation

is accepted for the carriage return (‘\r’) and line feed (‘\n’) symbols. No error returns. Example

usage:

/zr\r\n

/ztnum

Set send timeout delay to num milliseconds. The server will wait this amount of time between

sending data lines to the instrument. No error returns.

/z#C

Sets “block character” to C. If defined, it enables a special data format for data received from

the instrument: if a line begins with this character, the next character is assumed to be an

ASCII digit that determines the length (0-9 characters) of the rest of the data line. No error

returns.***Explain.... May report the following errors:

/-

Enable or suppress logging of /K (keep-alive) commands.

/?

Query server status. In the present implementation, this command returns a constant message

indicating a healthy server:

/99:still alive

1.6. A Typical Client-Server Session

The following example demonstrates the use of many of the ISOC server commands in a typical

client server session.

In this session, a client connects to the ISOC server and starts a session with the HP8594E

Spectrum Analyzer instrument.

ISOC for Windows Page 19

The session begins by establishing a TCP socket connection to port 25449 on the ISOC server.

Once two-way communication is established, the server sends a 2-byte authentication code to the

client, to which the client must respond appropriately.

Before connecting to a specific instrument, the client may request a list of instruments using the

/L command:

/L

In response to this command, the server sends the list of instruments to the client. For instance, if

only one instrument is present on the server, the response string will look like this:

/98:HPS|HPS|HP8594E Spectrum Analyzer|Analyseur de spectre HP8594E|

To actually connect to the instrument, the client would issue the following command:

/cHPS

The client may wish to receive background command results and graphical trace data on a UDP

port. For instance, if the UDP port number is 27001, the client would send the following

command next to the server:

/u27001

Next, the client initializes the spectrum analyzer instrument. The commands sent are instrument-

specific:

TDF A;MDS W;CONTS;MKACT 1;MKFCR 0;MKFC OFF;MKTRACK OFF;

HD;AUTO;LG;DEMOD OFF;SPEAKER OFF;

Since these command strings are not preceded by a forward slash, they are forwarded to the

instrument.

The client may wish to inquire as to whether a switch matrix is present:

/M?

The presence of the switch matrix is indicated by a response string containing the number 1. A 0

indicates that matrix functionality is not available. Even in this case, the client may opt to inquire

about any default inputs that may be defined for this instrument:

/MD

To actually obtain a graphical trace repeatedly from the spectrum analyzer, the client must

instruct the server to periodically send a TRA? query to the instrument and interpret the result.

This is done using the following command string:

/t1:150,4,2,400,8000,200,200,0,TRA?

ISOC for Windows Page 20

This command string provides access to one of the most powerful functions of the ISOC server.

The command letter T identifies this as a TRACE command; the digit that follows indicates that

this will be trace 1. The server can process three independent trace commands simultaneously.

The first number after the colon, 150, indicates that this command should be processed every 150

milliseconds. In other words, network and instrument performance permitting, approximately six

traces per second will be obtained from the instrument.

The next several numbers tell the server how the instrument's binary response is to be

interpreted. The Hewlett-Packard spectrum analyzer sends the trace response in the form of a

400-byte data block representing 400 samples across the trace window. The actual data block is

preceded by a four-byte header, which the ISOC server ignores. The data format is little-endian

(most significant byte first.) Each data point is represented by a two-byte number with a range of

0 to 8000. Here, we ask the server to resample this data with 200 sample points, each with an

amplitude range of 0 to 200. The resampling method requested is the "binary bins" or "minimax"

method. To summarize, the following numerical parameters are used:

150 Sample interval in milliseconds

4 Byte offset (start of data block within the instrument's response)

2 Instrument data format is little-endian

400 Number of sample points

8000 .. Sample amplitude range

200 Number of sample points requested after resampling

200 Sample amplitude range requested after resampling

0 Resampling method requested is binary bins

Immediately after this command is issued, the server begins to obtain traces, sending the

resampled trace result to the UDP port previously specified using the /U command. Of course,

the client application must listen for incoming data on this port, and have the capability to

interpret and process graphical trace data.

The client can then proceed to set or query instrument settings. For instance, to obtain the current

center frequency setting of the spectrum analyzer, the client would issue the CF? command and

wait for a numerical response.

In order to ensure proper client operation, it may be necessary to obtain instrument settings that

define how the instrument interprets command parameters or formats its responses. For instance,

the AUNITS? command can be used to obtain the current amplitude units in use by the

instrument.

Of particular interest on the HP spectrum analyzer is the INZ? command, which can be used to

obtain the current input impedance setting. This setting is essential in order to accurately convert

between amplitude units such as dBm and dBV.

ISOC for Windows Page 21

This sample session demonstrates the essential features of the ISOC server. More complex

sessions may include switch matrix operations, utilizing the power bar to reset an instrument, or

using interconnected instruments for "click-and-tune" functionality.

It should be noted that much of this functionality (in particular, client authentication, length-

prefixed command processing, instrument commanding, trace display, and digital audio

playback) is automated through the ISOCInstrument control. Whenever possible, it is

recommended that instead of directly connecting to the ISOC server, applications should make

use of the services of this OLE/COM control component.

1.7. Rate Adaptive Algorithm

Because the server expects connections from clients over an unreliable network, it needs to be

protected against network connections that go down or clients that fail. Because connections can

be mode over low-bandwidth networks, it is important to ensure that the connection is not

overloaded by excess amounts of data.

Both these goals are accomplished by the rate-adaptive algorithm built into the server. This

algorithm requires cooperation by the client and thus may have implications on client program

design.

In essence, the server expects the client to send commands regularly. If the client is not heard

from for an extended period of time, the server assumes that the connection is lost and terminates

the session.

The server also expects the client to regularly send /K commands with the most recent time

stamp (if any) received as part of a UDP packet. The server uses this to calculate packet

turnaround time and, if necessary, reduce the data rate.

If no commands are received at all for 15 seconds, the server “throttles down”, reducing the data

rate. This reduction in the data rate may mean less frequently executed trace commands,

increased audio compression, or the complete suppression of audio data.

If no commands are received in 4 consecutive 15 second periods, the server terminates the

connection. The server also throttles down if the turnaround time (as measured through the /K

command) is excessive.

The server can also “throttle up” if turnaround time is low, as measured through any /K

commands received. Experiments show that this algorithm is sufficient to maintain good data

flow even on severely restricted communication channels (such as a low-bandwidth cellular

connection.)

1.8. A Simple Example

The following simple C++ program connects to an ISOC server and obtains the list of

instruments available on that server.

ISOC for Windows Page 22

Note that this example only demonstrates the very essentials of communicating with an ISOC

server, and does not make use of more advanced options such as communicating with an

instrument, using background commands and trace or audio processing, or using “keepalive”

packets. Nevertheless, it can be used as a starting point, a basis for developing ISOCSVC-

compatible client applications.

To compile this program, type:

CL -GX ISOCTEST.CPP WSOCK32.LIB ISOCDev.lib

Note that this assumes that ISOCDev.h, sendrecv.h, and ISOCDev.lib are present in the current

directory. When executing the program, ISOCDev.dll must reside in the current directory.

#include <iostream>

#include "ISOCDev.h"

#include "sendrecv.h"

void main(void)

{

 SOCKET s;

 SOCKADDR_IN sin;

 WSADATA wsaData;

 int nLen;

 char pBuf[4096];

 WSAStartup(0x0101, &wsaData);

 s = socket(AF_INET, SOCK_STREAM, 0);

 if (s == INVALID_SOCKET)

 {

 cerr << "Could not create socket." << endl;

 exit(1);

 }

 sin.sin_family = AF_INET;

 sin.sin_port = htons(25449);

 sin.sin_addr.s_addr = 0x100007F; // 127.0.0.1 = localhost

 if (connect(s, (LPSOCKADDR)&sin, sizeof(sin)))

 {

 cerr << "Unable to connect." << endl;

 closesocket(s);

 exit(1);

 }

 Sleep(250); // Without some delay, sends that follow immediately

 // fail. The 250 ms is for the benefit of dial-up W95

 // connections that appear to require that.

 if (!ISOCAuthenticateClient(s))

 {

 closesocket(s);

 cerr << "Authentication failure." << endl;

 exit(1);

 }

 sendstr(s, "/L\n");

ISOC for Windows Page 23

 nLen = recvwithlength(s, pBuf, sizeof(pBuf), 0);

 if (nLen == 0)

 {

 cerr << "No data received." << endl;

 closesocket(s);

 exit(1);

 }

 cout << "Instrument list received:" << endl;

 cout.flush();

 cout.write(pBuf, nLen);

 cout << endl;

 closesocket(s);

 exit(0);

}

ISOC for Windows Page 24

2. ISOC Background Scheduler Server API

The ISOC background scheduler is a server application that is capable of performing unattended

scans at scheduled times using ESN and ICOM receivers. It is also capable of recording audio at

scheduled times.

Similarly to the main ISOC server, the ISOC background scheduler is also a server application

that listens for incoming TCP socket connections. The port number in use by the background

scheduler is 25450.

When an incoming connection is detected, the background scheduler expects the client to

authenticate itself with the same authentication method that is used by the main ISOC server.

Once authentication is completed successfully, the background scheduler is ready to respond to

queries.

Unlike the main ISOC server, the background scheduler does not utilize a length-prefixed

protocol for transmitting or receiving commands or data. Instead, a plain ASCII protocol with

human-readable commands and responses is used. Therefore, except for the initial authentication

sequence, it is possible to control the background scheduler using a text-only tool such as a telnet

program.

2.1. Schedule Entries

The ISOC background scheduler maintains a list of schedule entries. Each schedule entry

specifies an instrument, a set of instrument settings, input and output files, and times. For

instance, a typical schedule entry may look like the following:

ESN|2000/12/18|0000/00/00|3000|

FMBCAST|FMSCAN|10|ANT1|3|FM Monitoring|HOST22|;

As can be seen, a schedule entry consists of several fields, which are delimited by the vertical bar

character. Here's a list of these fields from the above example and their interpretation:

ESN: The name of the instrument used for the background operation. Must be an

ESN or ICOM radio, or an audio input device.

2001/12/18: The date when this background schedule becomes active

0000/00/00: The date after which this schedule is no longer active (all zeroes mean run

forever)

300.000: 42 hexadecimal digits (0..F) each representing one of 168 one hour period in

the week. This schedule will run from 0000 to 0200 every Monday.

FMBCAST: The name of the source file containing the list of frequencies to be monitored

FMSCAN: The name of the target file containing the scan results

10: Attenuation

ANT1: Name of signal source

3: Bandwidth selection (instrument-specific)

ISOC for Windows Page 25

FM Monitoring: Name of this session

HOST22: Name of the client host where this schedule entry originated

; Extra initialization commands. A semicolon indicates no extra commands

This format is used throughout the background scheduler, both for storing schedule information

in the Registry, and for exchanging schedule information with client programs.

2.2. Input Files and Ranges

When the background scheduler operates a radio, it sets the radio to scan a series of frequencies

as specified in an input file. Two input file formats are recognized: .LST and .SST files.

Of the two, .LST files are the simpler; they simply contain a list of frequency values (in units of

MHz), one per line. The other file format, .SST files, are inherited from a previous version of the

ISOC system and contain, in addition to frequencies, header information and instrument settings,

all of which are ignored by the background scheduler. It is recommended that newly created

frequency lists be stored in the simpler, .LST format.

Files of a third type, .SCL files, contain lists of .SST and .LST files, one per line.

The background scheduler recognizes a special type of input specification as defining a

frequency range. When the input specification begins with the colon character (which is never

part of a valid file name) it is assumed to specify a range in the following format:

:start-frequency;end-frequency;step-size

For instance, scanning the FM broadcast band using 200 kHz steps can be accomplished using

the following input specification:

:88100000;106900000;200000

Finally, the input specification may contain a single blank character. This is used, for instance,

when the background scheduler records audio and no frequency list is required.

2.3. Output Files

The result of background scanning with ESN and ICOM radios is a file with the .ESN extension.

The file format is inherited from an older version of the ISOC system. It contains the result of

one or more scanning sessions in binary format. Specifications for the .ESN file format are

available separately.

For audio recordings, the output file format is a monaural .WAV file with 8000 8-bit samples per

second. Additional fields in the .WAV file make it possible to identify the start and stop time of

VOX-controlled recording sessions.

The server never overwrites existing files. New files are created using the root name specified in

the schedule entry, to which the current date is appended.

ISOC for Windows Page 26

2.4. Background Scheduler Command Set

a

Adds an entry to the schedule. The server replies with a string containing the words "OK" or

"FAIL" depending on whether or not the operation was successful.

asid|start-date|end-date|hour-bits|host

Add a new job to the schedule. The start date (yyyy/mm/dd format), end date, and 42

hexadecimal digits representing 168 hours of the week must be specified, along with the

name of the submitting host.

Example (long lines broken up to fit the page):

AESN Test|1999/01/11|1999/12/31|23:59|

000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000|ISOC3

atid|type|instrument|input|output|post-proc|att|ant|BW|init-string

Add a task to an existing job. The task id contains the schedule and task identifiers, separated

by a colon. The task type, instrument, input and output files, post-processing batch file,

default attenuation, antenna, and bandwidth settings, as well as an optional instrument

initialization string must be specified.

Example:

AESN Test:ESN Rcvr|ESN|BAND1.LST|BAND1.ESN|POSTPROC.BAT|0|ANT1|9000|;

Note that the init parameter must always have a value. If no initialization string is needed,

use a semicolon (‘;’).

ccommand

Catalog operations. Subcommands are used to enumerate input and output files stored on the

server.

cb

List batch files. All existing .BAT and .CMD files are listed, complete with their filename

extension.

cf

List French-language help files. All existing .MAF files are listed, complete with their

filename extension.

ISOC for Windows Page 27

ch

List English-language help files. All existing .MAN files are listed, complete with their

filename extension.

ci

List input files. All .LST, .SST, and .SCL files are listed, complete with their filename

extension.

cl

List log files. All existing .LOG files are listed, complete with their filename extension.

cm

List MP3 audio files. All existing .MP3 files are listed, complete with their filename

extension.

co

List output files. All existing .ESN files are listed, complete with their filename extension.

cs

List all files. All existing files are listed, complete with their filename extension.

cw

List waveform audio files. All existing .WAV files are listed, complete with their filename

extension.

cx

List Excel files. All existing .XLS files are listed, complete with their filename extension.

c*

List all files of a known type. All existing files are listed, complete with their filename

extension.

d

Delete a schedule entry.

dsid

Delete a job. All tasks of the selected job will also be removed.

ISOC for Windows Page 28

dtid

Delete a task. The id parameter must contain the job and task name separated by a colon.

einstrument

List default (hardwired) input for the requested instrument. The response contains the

identifier, English name, and French name of the default input, separated by the vertical bar

character. If there is no default input, the string FAIL is returned. For instruments with multiple

default inputs, the response takes the following form:

0|[Multiple hardwired connectors]|[Plusieurs connections câblées]

finstrument

List filter values for the requested instrument. This command is necessary because radios (in

particular, ESN receivers) may have non-standard IF filters installed. A typical response to this

command may appear as follows:

3000,6000,9000,20000,120000,250000

Applications would typically use this command to generate an on-screen control (e.g., list box)

in which available filter values are presented to the user.

Please note that the filter set returned represents the last value queried from the instrument; i.e.,

no query is performed in response to this command.

i

List available instruments for background operation. Instruments are listed, one per line, using

the following format:

identifier|type|English-name|French-name

After the last instrument, the string "OK" appears on a line by itself, indicating the end of the

list.

For instance, if the server has a single ESN instrument, the server may respond as follows:

ESN1|ESN|Rohde&Schwarz ESN Test Receiver|Récepteur ESN R&S

OK

k

Keep-alive command. The server responds with the current date and time:

OK 2001/01/04 10:18:48

ISOC for Windows Page 29

l

List all scheduled sessions. Sessions are listed one per line in the following format:

identifier:rate|schedule-entry

The word OK by itself on a line indicates the end of the list has been reached.

The identifier is a numeric value that uniquely identifies schedule entries. Identifiers are valid

for the current session only; if the client disconnects from the background scheduler server, a

different set of identifiers may be used upon reconnection.

The list format is almost identical to the format used in the A command. The only difference is

that every line has an extra element at the beginning: a numeric value. If this is –1, the scan is

not currently executing; if it is 0 or a positive number, the scan is active. A positive number

represents a near real-time measurement of the scanning rate, in units of channels per second.

For example, in response to the L command the server may output the following:

1:329|ESN|1999-01-11|23:00|1999-01-11|23:59|TEST.SCL|TEST|0|0|9000|;

2:-1|ESN|1999-01-12|23:00|1999-01-12|23:59|TEST.SCL|TEST|0|0|9000|;

m

Get monitoring center (server) name.

q

Quit (terminate current client session.)

rinstrument

List available inputs for the selected instrument. The list contains one entry per line in the

following format:

identifier|English-name|French-name

After the last input, the word OK appears by itself on a line to indicate that the end of the list

has been reached.

s

Query current status of schedule entry.

ssid

Query a job's status.

ISOC for Windows Page 30

stid

Query a task's status.

tcommand

File transfer commands. Files can be uploaded to, or downloaded from, the server. A simple

length-prefixed protocol is used, with no error correction or flow control facility; it is assumed

that error-free transmission is provided for by the underlying TCP socket mechanism.

The (binary) file content is preceded by a 4-byte value indicating the number of bytes to

follow. The length is Intel-encoded (big-endian.)

td

Download a file to the client. Upon receipt of this command, the server commences sending

the file. An error prior to transmission is indicated by a zero length value sent. An error

during transmission results in the TCP socket being closed.

th

Type (list) named file in postproc directory.

tl

Obtain length of named file (NB: This command is not yet implemented.)

tr

Remove named file.

tt

Type (list as text) named file. The contents of the file will be listed on output.

tu

Upload a file to the server. Immediately after this command, the client must begin

transmitting the file, prefixed by a four-byte length value. Errors during reception cause the

server to close the TCP socket.

uidentifier

DEPRECATED: List default input for a specific instrument.

videntifier

Verify a task. Presently, verification checks if the task's frequency list a) contains duplicate

entries, or b) longer than the number of frequencies allowed by the instrument.

ISOC for Windows Page 31

xidentifier

Expunge a task (terminate running measurements.)

yidentifier

Resume a task that was interrupted.

2.5. A Simple Example

The following program connects to the ISOCSCAN server on the machine on which it executes,

obtains and prints the list of scheduled scans, and then terminates. It demonstrates the basic

operations of the ISOCSCAN server.

To compile this program, type:

CL -GX SCANTEST.CPP WSOCK32.LIB ISOCDev.lib

Note that this assumes that ISOCDev.h, sendrecv.h, and ISOCDev.lib are present in the current

directory. When executing the program, ISOCDev.dll must reside in the current directory.

#include <iostream>

#include "D:/VIKTOR/CLIENTS/INDUSTRY/ISOC/ISOCNT/ISOCDev/ISOCDev.h"

#include "D:/VIKTOR/CLIENTS/INDUSTRY/ISOC/ISOCNT/sendrecv/sendrecv.h"

void main(void)

{

 SOCKET s;

 SOCKADDR_IN sin;

 WSADATA wsaData;

 int nLen;

 char pBuf[4096];

 WSAStartup(0x0101, &wsaData);

 s = socket(AF_INET, SOCK_STREAM, 0);

 if (s == INVALID_SOCKET)

 {

 cerr << "Could not create socket." << endl;

 exit(1);

 }

 sin.sin_family = AF_INET;

 sin.sin_port = htons(25450);

 sin.sin_addr.s_addr = 0x100007F; // 127.0.0.1 = localhost

 if (connect(s, (LPSOCKADDR)&sin, sizeof(sin)))

 {

 cerr << "Unable to connect." << endl;

 closesocket(s);

 exit(1);

 }

 Sleep(250); // Without some delay, sends that follow immediately

 // fail. The 250 ms is for the benefit of dial-up W95

 // connections that appear to require that.

ISOC for Windows Page 32

 if (!ISOCAuthenticateClient(s))

 {

 closesocket(s);

 cerr << "Authentication failure." << endl;

 exit(1);

 }

 send(s, "L\n", 2, 0);

 cout << "Schedule:" << endl;

 while (1)

 {

 nLen = recv(s, pBuf, sizeof(pBuf), 0);

 if (nLen == 0)

 {

 cerr << "No data received." << endl;

 closesocket(s);

 exit(1);

 }

 for (char *p = pBuf; p != NULL && *p != '\0';)

 {

 char *q = strchr(p, '\n');

 if (q) *q = '\0';

 cout << p << endl;

 if (!strcmp(p, "OK")) goto DONE;

 p = q;

 if (p) p++;

 }

 }

DONE:

 closesocket(s);

 exit(0);

}

ISOC for Windows Page 33

3. ISOC Instrument Control

The complex functionality of the ISOC instrument server is made more accessible through the

ISOCInstrument.dll.

This component is an ActiveX control that provides the following functionality:

1. Automatic connection to servers and instruments

2. Processing and visual presentation of trace data

3. Receiving and processing background command results

4. A simple set of methods that can be used from Visual C++, Visual Basic, Web scripts, and

other programming environments.

There are several ways for an application program to utilize the capabilities of this control.

First, an application may use a hidden control for instrument communication. Any information

displayed will be displayed by the application itself, not by the control, which remains invisible

to the user.

Second, an application may make the control visible, allowing it to display trace data.

Third, the application may keep the control invisible and use it for playing back digital audio.

These three modes of operation are not mutually exclusive, but since a single copy of the

ISOCInstrument control can only be connected to one instrument at a time, performing multiple

functions simultaneously generally requires multiple copies of the control.

Note that it is entirely normal for an application to utilize multiple copies of the control. This is

generally the case if an application provides a means to connect to multiple instruments

simultaneously.

Examples presented in this section use the syntax of Visual Basic, a language especially suited

for controlling ActiveX objects. However, the ISOCInstrument control can be utilized from any

programming language that is compatible with ActiveX technology, including Visual C++,

Borland Delphi, and more.

3.1. Modes of Operation

The ISOCInstrument control can be used in three different modes of operation: in server control

mode, in graphical trace mode, and in audio mode.

ISOC for Windows Page 34

3.1.1. Server Control Mode

In server control mode, none of the ISOCInstrument control’s advanced features are used.

Instead, the control is used merely as a convenient tool for communicating with the ISOC server.

This mode can be used, for instance, to obtain a list of instruments from the server.

In this mode, an application would utilize the ServerConnect method to connect to a server, and

the Transact property to exchange information with it. Optionally, an application may also use

the Send method and the Receive property, in conjunction with the Receive event.

If using it in this mode, an application will likely keep the ISOCInstrument control invisible.

The following Visual Basic code fragment is an example for this type of use. It obtains the list of

instruments from the specified server and stores it in the string variable SrvLst:

Dim ISOC As Object, SrvLst as String

Set ISOC = CreateObject("ISOCInst.ISOCInst.1")

Call ISOC.ServerConnect("isoc.ic.gc.ca", 25449)

 SrvLst = ISOC.Transact("/L" + chr(10))

Information about the /L command and the server’s response can be found in section 1.3.6. After

the above code fragment is executed, SrvLst may contain a string similar to the following

(newlines, inserted here for printability, are not part of the server’s response):

/98:ADV|ADV|Advantest Spectrum Analyzer|Analyseur de spectre ADVANTEST|

:ESN|ESN|Rohde&Schwarz ESN Test Receiver|Récepteur ESN R&S|

:HPS|HPS|Hewlett-Packard Spectrum Analyzer|Analyseur de spectre|localhost

:SND|SND|Windows Multimedia Sound|Services de son digitalisés|

3.1.2. Graphical Trace Mode

In graphical trace mode, an application would make the ISOCInstrument control visible, use it to

connect to a specific instrument on a server, and request a graphical trace from that instrument.

The steps an application must perform to obtain a trace are as follows:

1. Connect to the server

2. Connect to the desired instrument

3. Set up trace parameters

4. If not yet shown, display the control

For instance, a the following Visual Basic code fragment configures an ISOCInstrument control

(ISOC1) in a dialog box to connect to an HP Spectrum Analyzer on a remote server and display a

trace 4 times a second:

Call ISOC1.ServerConnect("localhost", 25449)

Call ISOC1.Connect("HPS")

Call ISOC1.Send("TDF A;MDS W;" + Chr(10))

ISOC1.TraceOffset = 4

ISOC1.TraceType = 2

ISOC1.TraceWidth = 400

ISOC1.TraceHeight = 8000

ISOC for Windows Page 35

ISOC1.DisplayWidth = 200

ISOC1.DisplayHeight = 200

ISOC1.TraceResample = 0

ISOC1.DisplayMode(0) = 1

ISOC1.HorizontalGraticule = 8

ISOC1.VerticalGraticule = 10

ISOC1.GraticuleColor = &H20000C0

ISOC1.ForeColor = &H200FFFF

ISOC1.BackColor = &H20080C0

ISOC1.CursorColor = &H2FF0000

ISOC1.ShowTime = True

ISOC1.TraceCommand = "TRA?"

ISOC1.TraceInterval = 250

Note that it is a good idea to leave updating the TraceCommand and TraceInterval properties to

the end, to ensure that the control does not attempt to acquire traces from the instrument when

not all parameters are correctly set yet.

3.1.3. Audio Control Mode

In audio control mode, an application would create an invisible ISOCInstrument control, use it to

connect to a sound source, and instruct it to play back streaming audio. The steps required to

obtain streaming audio playback are as follows:

1. Connect to the server

2. Connect to the sound source

3. Set the sound control parameter

4. Set the volume

The following Visual Basic code fragment demonstrates how a control named ISOC1 can be

made hidden and used to deliver streaming audio at one quarter of the maximum volume:

ISOC1.Visible = False

Call ISOC1.ServerConnect("isoc.ic.gc.ca", 25449)

Call ISOC1.SoundConnect("SND")

ISOC1.SoundFlags = 13

ISOC1.Volume = 16384

You must use the SoundConnect method when connecting to an

audio playback virtual instrument. Although the Connect method

will also succeed, no audio will be heard.

Note that successful execution of this code requires that compatible sound hardware be installed

on both the client and the server.

3.2. A Web Script Example

The example in figure 1 (shown at the end of this section) is a simple HTML page that utilizes

the ISOCInstrument.dll to display a visual representation of the ESN receiver and provides

graphical trace updates, audio, and a simple form-based control interface. This Web page can be

ISOC for Windows Page 36

used with the Internet Explorer browser; other browsers may require plug-ins in order to support

embedded custom controls.

This Web script creates two ISOCInstrument objects: the first (named RSESN) controls the ESN

receiver, while the second (SND) does audio playback. Other elements in the page exist merely

to provide a minimalistic, but useful, graphical user interface.

The Web page begins with the standard HTML preamble, followed immediately with a Visual

Basic script:

<HTML>

<HEAD>

<SCRIPT LANGUAGE="VBScript">

<!--

Dim FRval, SPval

Sub window_onload()

 call RSESN.ServerConnect("isoc.gc.ca", 25449)

 call RSESN.Connect("ESN")

The function that begins here is executed immediately after the Web page is loaded into the

browser. It references objects like RSESN that are defined later in the page. It calls methods of

RSESN to establish connection to the (hypothetical) ISOC server at isoc.gc.ca, and to open an

instrument named ESN (presumably, an ESN receiver.) Next, we send some initialization

commands to the receiver itself:

 call RSESN.Send("H OF;LE:F AS;ME:C L,FR;SPE 50,ON;MO IF;" + chr(10))

These commands, separated by semicolons, are sent in unaltered form to the receiver, setting up

the receiver with operating parameters for working with our software.

The next set of commands establish settings for the background trace. This includes sending the

background trace command to the ISOC server, and setting up the trace parameters:

 RSESN.TraceCommand = "SW:B?"

 RSESN.TraceOffset = 4

 RSESN.TraceType = 1

 RSESN.TraceWidth = 0

 RSESN.TraceHeight = 8000

 RSESN.DisplayWidth = 200

 RSESN.DisplayHeight = 200

 RSESN.TraceResample = 0

 RSESN.DisplayMode(0) = 1

 RSESN.TraceInterval = 1000

The trace command, SW:B?, causes the receiver to respond with a binary data block representing

the trace display. This command will be sent to the receiver once every 1000 milliseconds, as

established by the TraceInterval setting. Other settings establish the format of the trace data,

and the desired size of the visible trace display.

Lastly, we set up a few cosmetic settings. The meaning of these is self-explanatory:

ISOC for Windows Page 37

 RSESN.HorizontalGraticule = 8

 RSESN.VerticalGraticule = 10

 RSESN.GraticuleColor = &h020000C0

 RSESN.ForeColor = &h0200FFFF

 RSESN.BackColor = &h02004040

 RSESN.CursorColor = &h02FF0000

 RSESN.ShowTime = true

And some more boring stuff: we call two subroutines (defined later) in order to update the

displayed values for the frequency and span:

 call SetFR(0)

 call SetSP(0)

That's it: we're done setting up the ESN receiver. We have, however, a second object to

configure: one that will provide sound playback. Like RSESN, SND is an object defined later in

the HTML file. Here we initialize it as follows:

 call SND.ServerConnect("isoc.gc.ca", 25449)

 call SND.SoundConnect("SND")

 SND.SoundFlags = 13

 SND.Volume = 65535

Before we leave, we do one more thing: we set the focus to a field (defined later) where the user

can enter instrument commands:

 call COMMAND.focus()

end sub

The next subroutine is invoked whenever the RSESN object receives data from the server. Any

text received is added to the contents of the field BUFFER.

Sub RSESN_Receive()

 buf = RSESN.Receive

 BUFFER.value = BUFFER.value + buf

end sub

The next subroutine is a helper function that is invoked whenever a mouse event occurs within

the ESN receiver's display area. This subroutine draws a frequency or span marker depending on

whether or not the Control key is depressed when the user clicks within the trace area.

Sub UpdateMarker()

 MK_SHIFT = 4

 if (RSESN.KeyFlags And 4) = 4 Then

 bSpan = true

 Else

 bSpan = false

 End If

 nXPos = RSESN.MousePosX

 RSESN.CursorPos = nXPos

 RSESN.SpanCursor = bSpan

 If bSpan Then

ISOC for Windows Page 38

 fSpan = SPval - SPval / 100 * nXPos

 If fSpan < 0 Then

 fSpan = -fSpan

 End If

 fSpan = fSpan / 1000

 strCaption = "sp: " + CStr(CLng(fSpan)) + " kHz"

 Else

 fFrq = FRval - SPval / 2 + SPval / 200 * nXPos

 fFrq = fFrq / 1000

 fLvl = RSESN.CursorLevel

 fLvl = fLvl * 80 / 200

 strCaption = "f: " + CStr(CLng(fFrq)) + " kHz" + chr(10)

 strCaption = strCaption + "l: " + CStr(CInt(fLvl)) + " dB"

 End If

 RSESN.Caption = strCaption

end sub

This subroutine is called in response to three mouse events:

Sub RSESN_LButtonDown()

 RSESN.ShowText = true

 call UpdateMarker

end sub

Sub RSESN_MouseMove()

 call UpdateMarker

end sub

Sub RSESN_LButtonUp()

 RSESN.CursorPos = -1

 RSESN.ShowText = false

end sub

We also need a function that sends any commands the user enters to the server:

Sub Send(buf)

 call RSESN.Send(buf + chr(10))

 call COMMAND.focus()

end sub

Lastly, two helper functions update the center frequency and span values, respectively. If these

functions are called with a value of 0, they query the instrument for the current setting.

Sub SetFR(newFR)

 If newFR > 0 Then

 call RSESN.Send("FR " + newFR + ";" + chr(10))

 End If

 FRval = RSESN.Transact("FR?" + chr(10))

 FR.value = FRval

end sub

Sub SetSP(newSP)

 If newSP > 0 Then

 call RSESN.Send("SPA " + newSP + ";" + chr(10))

 End If

 SPval = RSESN.Transact("SPA?" + chr(10))

 SP.value = SPval

end sub

ISOC for Windows Page 39

-->

</SCRIPT>

That's it for the scripts; the rest is plain HTML. First, we have some header text, followed by a

series of radio buttons in a form; clicking each of these buttons causes the corresponding method

of the RSESN object to be called.

<TITLE>Test Page</TITLE>

</HEAD>

<BODY>

<H1>Test Page: ISOC ActiveX Instrument Control</H1>

<H3>RS ESN Virtual Instrument</H3>

<P>This page contains the ISOC ActiveX Instrument Control, preconfigured to

connect to the RS ESN instrument.</BR></P>

<SMALL>Resampling method: <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.TraceResample = 0" NAME="MODE" CHECKED>Peaks

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.TraceResample = 1" NAME="MODE">Sample

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.TraceResample = 2" NAME="MODE">Average

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.TraceResample = 3" NAME="MODE">Minimum

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.TraceResample = 4" NAME="MODE">Maximum</SMALL>

<SMALL>Trace mode: <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.DisplayMode(0) = 1" NAME="TRACE" CHECKED>Clear Write

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.DisplayMode(0) = 2" NAME="TRACE">View

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.DisplayMode(0) = 3" NAME="TRACE">Maximum

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.DisplayMode(0) = 4" NAME="TRACE">Minimum

 <INPUT LANGUAGE="VBScript" TYPE="radio"

 ONCLICK="RSESN.DisplayMode(0) = 5" NAME="TRACE">Average</SMALL>

Next, we have the controls themselves! The RSESN control is defined with a size of 400 by 300

pixels; this provides a good trace area for most screen resolutions. The SND control is defined, in

contrast, with a size of 0x0; this control therefore remains invisible, which is exactly our

intention, since we don't want a visual trace display to be associated with the sound playback.

<DIV ALIGN="LEFT">

<TABLE BORDER="2" STYLE="border: medium groove rgb(128,128,128)">

 <TR>

 <TD>

 <OBJECT ID="RSESN" WIDTH="400" HEIGHT="300" BORDER="3"

 CLASSID="CLSID:8494107C-0FE7-11D2-8E06-00E02910AE47"

 CODEBASE="ISOCInstrument.cab#Version=1,3,0,1">

 Sorry, your browser doesn't appear to support ActiveX.</OBJECT>

 </TD>

 <TD>

 <OBJECT ID="SND" WIDTH="0" HEIGHT="0" BORDER="0"

 CLASSID="CLSID:8494107C-0FE7-11D2-8E06-00E02910AE47"

 CODEBASE="ISOCInstrument.cab#Version=1,3,0,1">

 Sorry, your browser doesn't appear to support ActiveX.</OBJECT>

ISOC for Windows Page 40

 </TD>

 </TR>

</TABLE>

</DIV>

<P>

Lastly, a few additional controls are provided for setting the frequency and span, and for sending

commands directly to the server.

Frequency: <INPUT TYPE="text" SIZE="12" NAME="FR" STYLE="font-family:

monospace"

>

<INPUT LANGUAGE="VBScript" TYPE="submit" VALUE="Set"

 ONCLICK="SetFR(FR.value)" NAME="SETFRE">

Span: <INPUT TYPE="text" SIZE="12" NAME="SP" STYLE="font-family: monospace">

<INPUT LANGUAGE="VBScript" TYPE="submit" VALUE="Set"

 ONCLICK="SetSP(SP.value)" NAME="SETSPA">

<INPUT TYPE="text" SIZE="44" NAME="COMMAND" STYLE="font-family: monospace">

<INPUT LANGUAGE="VBScript" TYPE="submit" VALUE="Send"

 ONCLICK="call Send(COMMAND.value)" NAME="SEND">

Result:

<TEXTAREA ROWS="6" COLS="50" NAME="BUFFER"></TEXTAREA>

</P>

</BODY>

</HTML>

That's it. Only about 160 HTML lines, yet this page already provides comprehensive control of

an ESN instrument and audio playback.

ISOC for Windows Page 41

Figure 1.

ISOC for Windows Page 42

3.3. Quick Reference

The following tables provide an overview of the properties, methods, and events defined by the

ISOCInstrument.dll control.

Property Name Type Parameters Description

BackColor in/out OLE_COLOR trace background color

ForeColor in/out OLE_COLOR text color

Caption in/out BSTR trace annotation text

CursorColor in/out OLE_COLOR cursor (local marker) color

GraticuleColor in/out OLE_COLOR graticule color

MarkerColor in/out long,

OLE_COLOR

color of specified (remote) marker

TraceColor in/out long,

OLE_COLOR

color of specified trace

ShowText in/out BOOL Annotation visible flag

ShowTime in/out BOOL Timestamp visible flag

VerticalGraticule in/out long Number of vertical graticules

HorizontalGraticule in/out long Number of horizontal graticules

MarkerPos in/out long, long Horizontal position of specified marker

MarkerTrace in/out long, long Trace that specified marker is attached to

MarkerLevel out long, long Vertical level of specified marker

DeltaMarker in/out long, BOOL Delta marker flag for specified marker

CursorPos in/out long Horizontal position of cursor (local marker)

CursorTrace in/out long Trace that cursor is attached to

SpanCursor in/out BOOL Cursor span mode flag

CursorLevel out long Current level at cursor position

MousePosX out long Current mouse horizontal position

MousePosY out long Current mouse vertical position

TraceCommand in/out BSTR Background trace command

TraceWidth in/out long Instrument horizontal trace resolution

TraceHeight in/out long Instrument vertical trace resolution

DisplayWidth in/out long Desired horizontal trace resolution

DisplayHeight in/out long Desired vertical trace resolution

DisplayHOffset in/out long Trace display horizontal displacement

DisplayVOffset in/out long Trace display vertical displacement

TraceResample in/out long Trace resample mode

TraceType in/out long Instrument trace data type

TraceOffset in/out long Trace data offset in instrument data block

TraceInterval in/out long Trace command execution interval

DisplayMode in/out long Trace display mode

Invert in/out BOOL Horizontal flip flag

Pause in/out BOOL Trace display freeze

AverageInterval out long Measured trace update interval

Jitter in/out long Audio playback jitter compensation

ISOC for Windows Page 43

SoundRate out long Measured sound data rate

SoundFlags in/out long Sound configuration settings

SoundLevel out long Measured sound volume level

Volume in/out long Audio playback volume

Transact out BSTR, BSTR Send command, retrieve response atomically

Receive out BSTR Retrieve server data

Keyflags out long Key flags at time of mouse event

BackgroundInterval in/out long Repeat rate for background command

BackgroundCommand in/out BSTR Background command string

BackgroundReceive out BSTR Retrieve background command result

MarkerPeak out long, long,

long, BOOL,

long

Compute marker peak position using

parameters

Notes:

 There are four markers, identified by a marker number. Delta markers operate in reference

to marker 1.

 There are four traces. The TraceCommand, TraceWidth, TraceHeight, DisplayWidth,

DisplayHeight, TraceType, TraceOffset, and TraceInterval properties correspond with the

respective parameters of the ISOC server's /t command.

 The marker peak position for the selected marker is computed using two parameters: peak

type and marker excursion. If the Boolean parameter is set, the marker will be moved to the

computed peak position.

Method Name Parameters Description

ServerConnect BSTR, long Connect to server at specified address and port number

ServerDisconnect Disconnect from server

Connect BSTR Connect to specified instrument on server

Disconnect Disconnect from instrument

SoundConnect BSTR Connect to specified audio instrument on server

Send BSTR Send command string

Draw hdc,long,long,lo

ng,long, BOOL

Draw trace display into device context using specified

rectangel coordinates, in color or black-and-white

Notes:

 The Draw method is used to create a copy of the trace for printing or clipboard transfers.

Event Name Description

LButtonDown The left mouse button was pressed within the trace area

LButtonUp The left mouse button was released

ISOC for Windows Page 44

LButtonDblClk The left mouse button was double-clicked

RButtonDown The right mouse button was pressed within the trace area

RButtonUp The right mouse button was released

MouseMove The mouse was moved

Receive Data was received from the server via the main TCP socket

BackgroundReceive Data was received from the server via the background UDP socket

Notes:

 The mouse is captured when the left button is depressed, so key up and mouse movement

events may be generated even when the mouse is no longer in the trace area.

 The ISOC instrument control generates events under the following circumstances:

1. The user performs a mouse action within the visible trace area

2. Data is received from the server

3.4. Methods Reference

3.4.1. The ServerConnect Method

ServerConnect(BSTR bstrAddress, long lPort)

The ServerConnect method connects to an ISOCSVC server on the specified port number. The

port number must be between 0 and 65535 and is usually set to 25449, the default port number

used by the ISOCSVC server. Example:

ServerConnect("isoc.ic.gc.ca", 25449)

3.4.2. The ServerDisconnect Method

ServerDisconnect()

The ServerDisconnect method is used to terminate an existing connection to a server. It is

recommended, but not necessary, to call this function prior to destroying an ISOCInstrument

control. After calling this function, it is possible to call ServerConnect again to connect to

another (or the same) ISOCSVC server.

3.4.3. The Connect Method

Connect(BSTR bstrID)

The Connect method is used to establish a connection to a specific instrument. If a list of

instruments is required, it can be obtained by sending the /L ISOCSVC command (section 1.3.6)

to the server using the Transact property.

3.4.4. The SoundConnect Method

SoundConnect(BSTR bstrID)

ISOC for Windows Page 45

The Connect method is used to establish a connection to an audio playback instrument.

3.4.5. The Disconnect Method

Disconnect()

The Disconnect method is used to terminate a connection to an instrument. It is recommended,

but not necessary, to call this method prior to calling ServerDisconnect. After a call the

Disconnect, the Connect method can be called to connect to another (or the same) instrument.

3.4.6. The Send Method

Send(BSTR bstrData)

The Send method is used to send a command to the server. If the command produces any output,

the Receive event will be triggered, allowing the calling program to process output

asynchronously. However, it is generally not recommended to use Send in this case, because

there is no easy way for the application program to identify which portion of the server response

corresponds with which command sent. It is therefore better to use the Transact property.

3.4.7. The Draw Method

Draw(unsigned long hdc, long nLeft, long nTop, long nRight, long nBottom,

BOOL bColor)

The Draw method causes the control to draw a copy of the current trace into the device context

represented by hdc. It is important that hdc represent a valid device context in the process

context in which the control runs.

The trace display will be drawn with current annotation and graticule settings into the rectangle

specified by nLeft, nTop, nRight, and nBottom. If bColor is true, the trace will be drawn with

the same color as it is drawn on screen; otherwise, it will be drawn in black on a white

background.

This method is intended primarily to facilitate copying the trace display to the clipboard or

printing the trace display. Setting the bColor flag to true is appropriate if the target device

context represents a bitmap. If it is a device context for a printer or a metafile device context, it is

recommended to turn off the bColor flag, especially if the control is set to draw the trace display

on a dark background, to avoid excessively dark printing.

3.5. Properties Reference

The properties of the ISOCInstrument control the object’s visual appearance, audio output, and

provide a means for interactive transactions with the ISOCSVC server.

3.5.1. The CursorColor Property

OLE_COLOR CursorColor

ISOC for Windows Page 46

The CursorColor property is used to set, or read, the color of the cursor. The cursor is the thin

vertical line that appears when the user clicks and drags the mouse within the trace area.

3.5.2. The GraticuleColor Property

OLE_COLOR GraticuleColor

The GraticuleColor property is used to set, or read, the color of horizontal and vertical

graticule lines.

3.5.3. The MarkerColor Property

OLE_COLOR MarkerColor(long nMarker)

The MarkerColor property is used to set, or read, the color of markers. The marker affected is

determined by the nMarker parameter, which must have a value between 0 and 3.

3.5.4. The TraceColor Property

OLE_COLOR TraceColor(long nTrace)

The TraceColor property is used to set, or read, the color used to display a particular trace. The

trace is identified by the nTrace parameter, which must have a value between 0 and 2.

3.5.5. The ShowText Property

BOOL ShowText

The ShowText property is a read/write flag that controls whether any text annotations are shown

as part of the trace display.

3.5.6. The ShowTime Property

BOOL ShowTime

The ShowTime property is a read/write flag that controls whether the time/date stamp is

displayed in the upper right corner of the trace display. If enabled, the date and time displayed

represents the last date and time stamp received from the server.

3.5.7. The VerticalGraticule Property

long VerticalGraticule

The VerticalGraticule read/write property controls the number of vertical graticules shown.

The maximum value is 20; setting VerticalGraticule to 0 turns them off completely.

3.5.8. The HorizontalGraticule Property

long HorizontalGraticule

ISOC for Windows Page 47

The HorizontalGraticule read/write property controls the number of horizontal graticules

shown. The maximum value is 20; setting HorizontalGraticule to 0 turns them off

completely.

3.5.9. The MarkerPos Property

long MarkerPos(long nMarker)

The MarkerPos property is used to set, or read, the horizontal position of the marker identified

by the nMarker parameter. This parameter must have a value between 0 and 3. The property

must have a value between 0 and the horizontal resolution of the trace display; if the marker is

positioned outside the trace display, it will be turned off.

3.5.10. The MarkerTrace Property

long MarkerTrace(long nMarker)

The MarkerTrace property can be used to set, or read, the identifier of the trace to which the

marker identified by the nMarker parameter is attached. The nMarker parameter must have a

value between 0 and 3; the property must have a value between 0 and 2.

3.5.11. The MarkerLevel Property

long MarkerLevel(long nMarker)

The MarkerLevel read-only property can be used to determine the current level of the specified

marker. This value is generated from trace values and is thus dependent on the trace resolution. If

the trace resolution is lower than the instrument resolution, this value may not always agree with

the marker level reported by the instrument. The marker level will be between 0 and the vertical

trace resolution; the nMarker parameter must have a value between 0 and 3.

3.5.12. The DeltaMarker Property

BOOL DeltaMarker(long nMarker)

The DeltaMarker property is used to determine whether the marker specified by nMarker is a

delta marker or a regular marker. A delta marker is displayed using a different color and symbol.

The nMarker parameter must have a value between 0 and 3.

3.5.13. The CursorPos Property

long CursorPos

The CursorPos property is used to set the horizontal position of the cursor (the vertical line that

is normally used to track the mouse position while the user holds down the left mouse button.)

3.5.14. The CursorTrace Property

long CursorTrace

ISOC for Windows Page 48

The CursorTrace property is used to identify the trace to which the cursor is attached. The value

of the CursorLevel property depends on this setting. The CursorTrace property can have a

value between 0 and 2.

3.5.15. The SpanCursor Property

BOOL SpanCursor

The SpanCursor property is used to control the cursor’s appearance. If false, the cursor is

displayed as a single vertical line, with a short horizontal line segment indicating signal level at

the cursor position. If true, the cursor is displayed as two vertical lines indicating a span

centered around the middle of the trace area, and no level indicator is shown.

3.5.16. The CursorLevel Property

long CursorLevel

The CursorLevel read-only property is used to read the signal level at the cursor position.

Because this value depends on the horizontal trace resolution, if the trace resolution is different

from the instrument resolution, this value may differ from values reported by the instrument.

3.5.17. The MousePosX Property

long MousePosX

The MousePosX property is used to report the horizontal mouse position during mouse capture.

The mouse position is reported using trace units.

3.5.18. The MousePosY Property

long MousePosY

The MousePosY property is used to report the horizontal mouse position during mouse capture.

The mouse position is reported using trace units.

3.5.19. The TraceCommand Property

BSTR TraceCommand

The TraceCommand property reflects the trace command that is used to obtain traces from the

instrument in the background. It corresponds with the command parameter of the /T command of

ISOCSVC (section 1.3.8).

3.5.20. The TraceWidth Property

long TraceWidth

The TraceWidth property specifies the width of the trace on the instrument. This property

corresponds with the width parameter of the /T command of ISOCSVC (section 1.3.8).

ISOC for Windows Page 49

It is possible to specify a trace width of 0, in which case the actual width is calculated from the

amount of data received by the instrument in response to the trace command.

3.5.21. The TraceHeight Property

long TraceHeight

The TraceHeight property specifies the height of the trace on the instrument. This property

corresponds with the height parameter of the /T command of ISOCSVC (section 1.3.8).

3.5.22. The DisplayWidth Property

long DisplayWidth

The DisplayWidth property specifies the width of the trace on the display. If a display width of

200 is specified, a total of 201 data points (0-200) will be sent by the server. The server converts

trace data from the instrument’s resolution to the resolution specified via this property. This

property corresponds with the packwidth parameter of the /T command of ISOCSVC (section

1.3.8).

3.5.23. The DisplayHeight Property

long DisplayHeight

The DisplayHeight property specifies the height of the trace on the display. If a trace height of

200 is specified, trace values between 0 and 200 will be sent by the server. The server converts

trace data from the instrument’s resolution to the resolution specified via this property. This

property corresponds with the packheight parameter of the /T command of ISOCSVC (section

1.3.8).

3.5.24. The DisplayHOffset Property

long DisplayHOffset

The DisplayHOffset property specifies the amount by which the trace should be shifted

horizontally when it is displayed. This feature can be used, for instance, to shift the display when

the user is interactively controlling an instrument (e.g., changing the frequency) without the

latency involved with sending commands to the instrument itself.

3.5.25. The DisplayVOffset Property

long DisplayVOffset

The DisplayVOffset property specifies the amount by which the trace should be shifted

vertically when it is displayed. This feature can be used, for instance, to shift the display when

the user is interactively controlling an instrument (e.g., changing the reference level) without the

latency involved with sending commands to the instrument itself.

ISOC for Windows Page 50

3.5.26. The TraceResample Property

/Ttrace,interval,offset,type,width,height,packwidth,packheight,repack,command

long TraceResample

The TraceResample property specifies the method used by the server when converting from the

instrument resolution to the requested resolution. This property corresponds with the repack

parameter of the /T command of ISOCSVC (section 1.3.8).

3.5.27. The TraceType Property

long TraceType

The TraceType property specifies the data type used by the instrument to return trace data. This

property corresponds with the type parameter of the /T command of ISOCSVC (section 1.3.8).

3.5.28. The TraceOffset Property

long TraceOffset

The TraceResample property specifies the byte offset of the start of trace data within the packet

returned by the instrument in response to the trace command. This property corresponds with the

offset parameter of the /T command of ISOCSVC (section 1.3.8).

3.5.29. The TraceInterval Property

long TraceInterval

The TraceResample property determines how frequently trace data is requested from the

instrument. Its value represents the time, measured in milliseconds, between subsequent traces.

This property corresponds with the interval parameter of the /T command of ISOCSVC

(section 1.3.8).

3.5.30. The DisplayMode Property

long DisplayMode(long nTrace)

The DisplayMode property specifies how a trace is displayed.

The ISOCInstrument control obtains a single trace from the instrument but can display up to

three traces on screen. The DisplayMode property can be used to determine which of the three

traces are to be displayed, and the mode of data display. In effect, this simulates the capability of

most instruments to display multiple traces, trace averages, maximums, and minimums.

3.5.31. The Invert Property

BOOL Invert

The Invert property is used to horizontally flip the trace display.

ISOC for Windows Page 51

3.5.32. The Pause Property

BOOL Pause

The Pause property is used to temporarily suspend the updating of the trace display. While it is

set to true, traces received from the instrument are ignored.

3.5.33. The AverageInterval Property

long AverageInterval

The AverageInterval read-only property reflects the average time between the receipt of

subsequent traces, calculated as a decaying average.

3.5.34. The Jitter Property

long Jitter

The Jitter property controls audio buffering. The higher the setting, the more audio data is

buffered before playback begins, increasing audio latency but better protecting the application

against problems caused by unreliable network connections.

Note that a minimal amount of buffering is always performed, so it is appropriate to set this

property to zero when the network connection is of good quality.

3.5.35. The SoundRate Property

long SoundRate

The SoundRate read-only property reflects the average number of bytes per second received as

part of the audio stream, calculated as a decaying average.

3.5.36. The SoundFlags Property

long SoundFlags

The SoundFlags property controls sound output. When written, it causes the corresponding

command to be sent to the server. When read, it reflects the settings in the most recently received

sound packet. The parameter is an integer value that is a combination of single-bit values, as

described in section 1.2.4.

3.5.37. The SoundLevel Property

long SoundLevel

The SoundLevel read-only property reflects the highest amplitude level found in the most recent

audio packet. It can be used to drive a visual feedback user interface component, such as a VU-

meter.

ISOC for Windows Page 52

3.5.38. The Volume Property

long Volume

The Volume property determines the sound volume. Its value is between 0 and 65535.

3.5.39. The Transact Property

BSTR Transact(BSTR bstrData)

The Transact property is used to perform a query-response transaction with the instrument

atomically (i.e., without being interrupted by another transaction, such as a background trace

command.) The property is read-only; its single parameter, bstrData, is the query command that

is sent to the instrument. This must be a single command terminated by a question mark to

ensure proper operation.

Example (HP 8594E):

CF = Transact("CF?")

3.5.40. The Receive Property

BSTR Receive

The Receive read-only property is used to read any data received from the server and buffered

by the ISOCInstrument control. It is normally called in response to a Receive event.

3.5.41. The KeyFlags Property

long KeyFlags

The KeyFlags property can be used to determine the status of the Shift and Control keys at the

time of the most recent mouse event. Its value is a combination of MK_CONTROL, MK_LBUTTON,

MK_MBUTTON, MK_RBUTTON, and MK_SHIFT, as described in the documentation for the

WM_LBUTTONDOWN message in the Win32 Platform SDK reference.

3.5.42. The BackgroundInterval Property

long BackgroundInterval

The BackgroundInterval property controls the frequency of execution of the background

command specified through the BackgroundCommand property.

3.5.43. The BackgroundCommand Property

BSTR BackgroundCommand

The BackgroundCommand property can be used to specify a command that will be repeatedly sent

to the instrument in the background. For instance, it can be used to regularly update marker

values by querying the instrument several times a second. When the command executed in the

ISOC for Windows Page 53

background generates output, the application receives a BackgroundReceive event and can use

the BackgroundReceive property to read the instrument’s response.

3.5.44. The BackgroundReceive Property

BSTR BackgroundReceive

The BackgroundReceive read-only property is used to read the instrument’s response after a

BackgroundReceive event.

3.5.45. The ScaleBase Property

double ScaleBase

The ScaleBase property determines the bottom value of the vertical scale, which may be

displayed to the left of the trace area.

3.5.46. The ScaleStep Property

double ScaleStep

The ScaleStep property determines the scale step size for horizontal graticules, as it may be

displayed to the left of the trace area.

3.5.47. The ScaleType Property

long ScaleType

The ScaleType property determines how to display a vertical scale to the left of the display area.

Possible values are:

0 No scale is displayed

1 Linear scale. Scale step is added to generate each subsequent value.

2 Exponential scale. Each scale value is multiplied by the scale step to

produce the next value.

3 Logarithmic (10 dB) scale.

4 Power scale (1 step corresponds with 20 dB) scale.

5 Square-power scale. Scale step is squared prior to computing each

scale value.

3.5.48. The MarkerLabel Property

BSTR BackgroundReceive(long nMarker)

The MarkerLabel property determines what text to display next to a marker.

ISOC for Windows Page 54

3.5.49. Stock Properties

The ISOCInstrument control also uses a small subset of stock properties that govern the control’s

visual appearance.

3.5.49.1. The BackColor Property

OLE_COLOR BackColor

The BackColor property is used to set the background color of the trace area.

3.5.49.2. The ForeColor Property

OLE_COLOR ForeColor

The ForeColor property is used to set the color of any text displayed in the trace area.

3.5.49.3. The Caption Property

BSTR Caption

The Caption property controls the text displayed in the upper left corner of the trace area. The

text can contain newline characters.

3.6. Events Reference

The ISOCInstrument control uses several events to communicate with the controlling application

asynchronously.

3.6.1. The LButtonDown Event

The LButtonDown event is fired every time the user clicks the left mouse button within the

display area of the control. When this happens, the control also begins capturing the mouse.

3.6.2. The LButtonUp Event

The LButtonUp event is fired if the left mouse button is released while the mouse cursor is

within the display area of the control or if the mouse is being captured by the control In response

to this event, the control stops capturing the mouse.

3.6.3. The LButtonDblClk Event

The LButtonDblClk event occurs if the user double-clicks the mouse within the control’s

display area.

3.6.4. The RButtonDown Event

The RButtonDown event indicates that the user clicked the right mouse button within the

control’s display area.

ISOC for Windows Page 55

3.6.5. The RButtonUp Event

The RButtonUp event indicates that the user released the right mouse button within the control’s

display area.

3.6.6. The MouseMove Event

The MouseMove event indicates that the user moved the mouse while the mouse was being

captured by the control.

3.6.7. The Receive Event

The Receive event indicates that data from the instrument has arrived.

3.6.8. The BackgroundReceive Event

The BackgroundReceive event indicates that data has arrived in response to a query executed in

the background.

ISOC for Windows Page 56

Appendix A. Authentication

Applications that connect to the ISOCSVC server or the ISOCSCAN server must respond to a

simple authentication request when the connection is established. Although this authentication

does not use commercial-grade encryption, it is sufficient to prevent causal attempts of server

break-in. The authentication mechanism may also be used in the future to prevent incompatible

versions of client and server programs from attempting to communicate with each other.

A.1 Authentication Algorithm

Although security is not a major concern for the ISOC suite, the fact that these applications

utilize the TCP protocol opens the possibility that servers may be accessed by unauthorized users

from either the public Internet or from other internal networks. Therefore, a simple

authentication mechanism has been developed to ensure that unauthorized users do not easily

gain access to the services of an ISOC server.

The authentication mechanism relies on a 2-byte key stored in the Windows Registry. When a

client connects to the ISOC server, the server responds with a random 4-byte query. The query is

generated using the following algorithm:

 h

16

hh

16

h AAAA2555555552AAAA EEEKPEKPQ

Where K is the 16-bit key from the Registry (HKLM\Software\Industry Canada\ISOC for

Windows\Key); E is a random 16-bit 'obfuscation word' obtained using the system timer; P is a

randomly generated 16-bit plaintext word; and the symbol denotes the exclusive-or operation.

For instance, if K=4213h, E=D28Eh, and P=02F8h, Q will be D22492CFh.

The plaintext word can be recovered using the following formula:

KQ
Q

Q
Q

P

 hh16hh16

5555AAAA
2

AAAA5555
2

The client must decrypt this query using the correct 2-byte authentication key, and return the

result to the server. If the result decodes correctly, the client is accepted; otherwise, the server

closes the unauthenticated connection after printing the following error message:

/66:Authentication failed

The query is sent to the client in big-endian byte order (least significant byte first) and the client

is expected to respond the same way.

The authentication mechanism is encoded in a pair of subroutines. The operation of these

subroutines also requires the presence of a Registry key.

ISOC for Windows Page 57

A.2 Client Authentication

bool ISOCAuthenticateClient(SOCKET s)

The ISOCAuthenticateClient function performs client authentication on socket s. It should be

called immediately after a TCP connection to an ISOCSVC or ISOCSCAN server has been

successfully established.

Note that experimentation found that a short delay (250ms) is required in order for the

authentication function to perform properly. If it is called immediately after opening the socket,

on certain target systems it occasionally fails.

A.3 Server Authentication

bool ISOCAuthenticateServer(SOCKET s)

The ISOCAuthenticateServer function should be called by ISOC servers immediately after an

incoming client connection is accepted. It performs the server-side of the authentication function.

A.4 Authentication Registry Key

The success of the ISOCAuthenticate... functions depends on the presence of a Registry value

on both the authenticating client and the server. This is a 2-byte binary value under the following

key:

HKEY_LOCAL_MACHINE\SOFTWARE\Industry Canada\ISOC for Windows\Key

The two-byte value is an encryption key. If it is not present on either the client or the server, or if

the values on the client and the server are not identical, authentication will fail.

Note that this value is automatically installed by the ISOC for Windows installer.

ISOC for Windows Page 58

Appendix B. Length-Prefixed Transactions

TCP sockets provide a byte-oriented stream of data. Because various network layers may

packetize data differently, there are no guarantees that a single packet created, and sent, on one

end of the connection will arrive as a single packet on the other end. Thus, a single call to the

socket library function send on one end may require multiple calls to the library function recv

on the other end.

To solve this problem, the ISOC servers use length-prefixed transactions. Every block of

information is preceded by a four-byte length header.

To facilitate length-prefixed transactions, the sendrecv.h header file defines three helper

functions. Note that these functions are defined as inline functions; only their declarations are

presented here in the text.

B.1 The recvwithlength Function

inline int recvwithlength(SOCKET s, char FAR* buf, int len, int flags);

The recvwithlength function receives a length-prefixed block of information on socket s,

filling buffer buf with up to len characters. The flags parameter contains flag values that are

defined for the recv function in the WinSock documentation.

Only the actual data (without the length prefix) is returned in the buffer pointed to by buf. If len

is less than the number of bytes indicated in the prefix of the received packet, the remaining data

is discarded.

Note that depending on network traffic, packet fragmentation, and packet size, one call to

recvwithlength may result in multiple calls to the WinSock recv function.

B.2 The sendwithlength Function

inline int sendwithlength(SOCKET s, const char *buf, int len,

 int flags, const struct sockaddr FAR *to = NULL,

 int tolen = 0);

The sendwithlength function creates, and sends, a length-prefixed packet on socket s. The data

that is to be sent is stored in the buffer pointed to by buf, and the number of bytes to be sent is

specified in len. The flags parameter may contain values as defined for the WinSock send

function. The to and tolen parameters also function identically to the similarly named

parameters of the WinSock send function, and allow sends on a connectionless socket, for

instance.

ISOC for Windows Page 59

B.3 The sendstr function

inline int sendstr(SOCKET sockfd, const char *p,

 struct sockaddr *pAddr = NULL, int nAddrLen = 0);

The sendstr function provides a convenient shorthand for sending zero-terminated strings as

length-prefixed data. The function automatically calculates the length of the string using the

strlen library function.

Because of the inefficiency of strlen, if the length of the string is known to the calling function

and performance is an issue, it is advantageous to use the sendwithlength function to avoid an

unnecessary recalculation of string length.

