

Integrated Spectrum Management System

ISOC for Windows

Developers' Roadmap

Last Updated: 3/27/2014 10:07:00 AM

ISOC for Windows Page i

ISOC for Windows Roadmap Table of Contents

ISOC for Windows Roadmap Table of Contents ... i

1. Software Architecture Roadmap .. 1

1.1. Overview .. 1

2. Component Map ... 3

3. Server Components .. 6

3.1. ISOCSVC.EXE .. 6

3.2. The ISOCLIB.DLL support library .. 12

3.3. ISOCSCAN.EXE ... 14

3.4. Auxiliary Programs .. 17

4. Client Components ... 20

4.1. Bilingual Operation .. 20

4.2. The ISOC client application ... 20

4.3. The ISOC scheduler ... 27

4.4. The ISOCInstrument.DLL control ... 28

4.5. Non-ISOC Specific Components ... 28

Appendix A. Code Organization and the Compilation Process ... 31

ISOC for Windows Page 1

1. Software Architecture Roadmap

1.1. Overview

The Integrated Spectrum Observation Center (ISOC) is an application suite of several client and

server programs and auxiliary components. The purpose of this application suite is to provide

flexible remote access to instrument suites using standard network protocols.

The following figure shows an overview of the main ISOC components and their relationships to

each other.

Server Computer

Client Computer

Main Server

ISOCSVC.EXE

Background Scanner

ISOCSCAN.EXE

Instrument Bank

Client Application

ISOCNT.EXE

Instrument Control

ISOCInstrument.DLL

Scheduler Application

ISOCSCHD.EXE

Server Manager

ISOCMGR.EXE

ICOM Calibrator

ICOMCAL.EXE

Rotator Calibrator

ROTCAL.EXE

Sound Mixer

MULTISND.EXE

ISOC for Windows Page 2

The instrument bank consists of a selection of radios, spectrum analyzers, and auxiliary

instrumentation that is connected to a controlling computer via a variety of interfaces: GP-IB,

RS-232, ICOM's CI-V. A special type of instrument is the PC audio port, used to capture, and

digitize, up to two monaural audio channels and stream audio to client computers.

Instruments are controlled by the main ISOC server, ISOCSVC.EXE. In addition to providing an

instrument interface, ISOCSVC.EXE also arbitrates access by providing a mechanism through

which instruments are reserved for use and later released.

Another key server component is ISOCSCAN.EXE, which performs background scanning

functions. Background scanning provides the ability to perform scheduled measurements in an

unattended fashion and store the results in data files that are made available for download.

Three auxiliary support applications perform ICOM radio calibration, calibration of the antenna

rotator instrument, and server management.

On the client side, all interactive communication with instruments is performed via the

ISOCInstrument control. This COM control component provides an interactive interface for

sending and receiving data, the ability to display a visual graph (instrument 'trace') and the ability

to play back an audio stream. This latter capability utilizes an external component,

MULTISND.EXE, which is a simple COM server performing digital audio mixing, in effect

permitting the user to listen to multiple audio sources simultaneously.

Yet another client application, ISOCSCHD.EXE, communicates with the background scanner

server. This application lets the user schedule and manage background scanner sessions.

Note: This is an evolving document that will continue to be

updated during the project's life cycle.

ISOC for Windows Page 3

2. Component Map

Executables:

DFREG.EXE Direction finder Registry setup

ICOMCAL.EXE Command-line calibrator program for ICOM receivers

ICOMDUMP.EXE Calibration result dump utility for ICOM receivers

IPSWEMU.EXE IP switch matrix emulator

ISOCCONF.EXE ISOC server configurator utility

ISOCCRON.EXE User interface to ISOC background scanner

ISOCDF.EXE Interactive ISOC DF application

ISOCGPS.EXE GPS monitor

ISOCMGR.EXE ISOC service application manager

ISOCNT.EXE Interactive ISOC application

ISOCSCAN.EXE ISOC background scanner service

ISOCSVC.EXE Main ISOC instrument control server

ROTCAL.EXE Antenna rotator calibrator

Dynamic-link libraries:

ANTCRON.DLL Scanner setup dialog for antenna devices

 used by: ISOCCRON.EXE

ANTSCAN.DLL Scanner module for antenna devices

 used by: ISOCSCAN.EXE

CIVSVC.DLL CI-V communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

CRCSE.DLL CRC Spectrum Explorer interactive support

 used by: ISOCNT.EXE

DC44X.DLL DC44X tone decoder interactive support

 used by: ISOCNT.EXE

DC4CRON.DLL Scanner setup dialog for DC-4XX tone decoders

 used by: ISOCCRON.EXE

DC4SCAN.DLL Scanner module for DC-44X tone decoders

 used by: ISOCSCAN.EXE

DF.DLL DF user interface components

 used by: ISOCNT.EXE

DF7KSVC.DLL Doppler DDF 7001 binary protocol driver

 used by: ISOCSVC.EXE

DFCRON.DLL Scanner setup dialog for DF

 used by: ISOCCRON.EXE

DFLIB.DLL DF-specific functions library

 used by: ISOCLIB.DLL

DFSCAN.DLL Scanner module for DF

ISOC for Windows Page 4

 used by: ISOCSCAN.EXE

DFSVC.DLL DF communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

ESMB.DLL ESMB receiver interactive support

 used by: ISOCNT.EXE

ESMBCRON.DLL Scanner setup dialog for ESMB receivers

 used by: ISOCCRON.EXE

ESMBSCAN.DLL Scanner module for ESN receivers

 used by: ISOCSCAN.EXE

ESNCRON.DLL Scanner setup dialog for ESN receivers

 used by: ISOCCRON.EXE

ESNSCAN.DLL Scanner module for ESN receivers

 used by: ISOCSCAN.EXE

FLEX.DLL FLEX tone decoder interactive support

 used by: ISOCNT.EXE

GPIBSVC.DLL GPIB communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

GPSSCAN.DLL Scanner module for GPS

 used by: ISOCSCAN.EXE

ICOM.DLL ICOM receiver interactive support

 used by: ISOCNT.EXE

ICOMCRON.DLL Scanner setup dialog for ICOM receivers

 used by: ISOCCRON.EXE

ICOMSCAN.DLL Scanner module for ICOM receivers

 used by: ISOCSCAN.EXE

IFRCRON.DLL Scanner setup dialog for IFR receivers

 used by: ISOCCRON.EXE

IFRSCAN.DLL Scanner module for IFR receivers

 used by: ISOCSCAN.EXE

ISOCInstrument.DLL ISOC virtual instrument control

 used by: ISOCNT.EXE

ISOCLIB.DLL ISOC common functions library

 used by: all ISOC components

ISOCUI.DLL ISOC user interface common components

 used by: ISOCNT.EXE

OARSCAN.DLL Scanner module for OAR receivers

 used by: ISOCSCAN.EXE

ROTCRON.DLL Scanner setup dialog for antenna rotators

 used by: ISOCCRON.EXE

ROTSCAN.DLL Scanner module for antenna rotators

 used by: ISOCSCAN.EXE

RS232SVC.DLL RS-232 communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

ISOC for Windows Page 5

RSFSP.DLL Rohde & Schwarz FSP receiver support

 used by: ISOCNT.EXE

RSIBSVC.DLL RSIB communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

RSSCAN.DLL Scanner module for R&S DF equipment

 used by: ISOCSCAN.EXE

SECRON.DLL Scanner setup dialog for Spectrum Explorer

 used by: ISOCCRON.EXE

SESCAN.DLL Scanner module for Spectrum Explorer

 used by: ISOCSCAN.EXE

SMHCRON.DLL Scanner setup dialog for SMH signal generators

 used by: ISOCCRON.EXE

SMHSCAN.DLL Scanner module for SMH signal generators

 used by: ISOCSCAN.EXE

SNDCRON.DLL Scanner setup dialog for audio recording

 used by: ISOCCRON.EXE

SNDSCAN.DLL Scanner module for background sound recording

 used by: ISOCSCAN.EXE

SOUNDSVC.DLL Digital sound communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

TBTCK.DLL Telonic/Berkeley TCK filter support library

 used by: ISOCNT.EXE

TCKCRON.DLL Scanner setup dialog for Telonic/Berkeley TCK filter

 used by: ISOCCRON.EXE

TCKSCAN.DLL Scanner module for Telonic/Berkeley TCK filter

 used by: ISOCSCAN.EXE

TCPIPSVC.DLL TCP/IP communications library

 used by: ISOCSVC.EXE, ISOCCONF.EXE

External components:

KNOBCtrl.dll ActiveX "knob" control

Lame_enc.dll The Lame MP3 encoder library (open source, but uses

technology that is patented in some countries)

METER.dll ActiveX "meter" control

Rsib32.dll Rohde & Schwarz RSIB support library

SCHEDULE.dll ActiveX "weekly grid" control

MULTISND.EXE ActiveX sound mixer server

MULTIWnd.dll Multiple window manager library

SEInterface.dll Visual Basic interface code for Spectrum Explorers

zlib.dll Open-source compression library

ISOC for Windows Page 6

3. Server Components

3.1. ISOCSVC.EXE

3.1.1. Overview

The primary component of the ISOC system on the server side is ISOCSVC.EXE. This server

listens for incoming TCP connections and provides a simple, interactive interface for

communicating with instruments. Its role is twofold. First, it acts as a 'protocol translator', for

lack of a better term, allowing software to connect to instruments with a variety of physical

interfaces via a TCP/IP network connection. Second, it acts as an arbitrator, managing access to

instruments from multiple clients.

There is one thing ISOCSVC.EXE doesn't do: it doesn't provide a virtualized instrument

interface. In other words, it doesn't provide services such as duplicating instrument state

information or providing a generic 'superset' of features for instruments such as spectrum

analyzers and receivers. Client programs are required to use the raw command set that the

instrument manufacturer provides for programmatic instrument control. This approach made it

possible for the server to be relatively small, robust, and reliable, without significantly (if at all)

increasing client complexity.

That said, the server does provide more than a mere bi-directional interface for instrument

control. It provides a means to schedule commands to be executed in the background (e.g.,

repetitive level measurements or trace readouts), and it provides a means to collect trace data and

compress it for optimized transmission. In particular, the server utilizes the connectionless UDP

protocol to continuously transmit stream data, such as trace updates, recurring background

command execution results, and audio.

Conceptually, the ISOCSVC.EXE server operates as follows. Upon startup, it listens for

incoming connections on a predefined TCP port. When a connection is established, a separate

thread is spawned which will manage all aspects of that connection.

This separate thread listens for incoming commands on the TCP socket. The thread operates in

one of two states: connected and not connected. When connected, the thread is associated with a

specific instrument to which commands are forwarded. Instruments may be managed in

synchronous mode (GP-IB instruments) or in asynchronous mode (RS-232 and CI-V

instruments.) The difference is that asynchronous instruments may send data at any time,

whereas synchronous instruments only send data when it is so requested by a specific command.

When the server receives a command from a remote client over the TCP socket, it first checks

for the presence of the slash character ('/') as the first character of the command. If the slash

character is present, the command is assumed to be a command for the server itself; if there is no

slash character, the command is forwarded to the instrument if the server is in the connected

state.

ISOC for Windows Page 7

Although this capability alone would be sufficient to fully control an instrument, there are

problems with performance. The overhead associated with sending commands over a TCP socket

becomes pronounced over slower networks, especially if either the client, or the server, (or both)

are connected via an ordinary modem line. Because of this, the server provides a background

command execution capability. Simply put, a client has the ability to request the repetitive

execution of a command in the background; results are communicated to the client using an

alternate channel of communication, for performance reasons as well as to ensure that the results

of foreground and background commands can be easily distinguished.

The channel of communication for background command results is a connectionless UDP socket.

If a client wishes to receive data via UDP, it communicates the port number to the server via a

special command. Subsequently, the server will use this port number to send background results.

The main advantage of using UDP is that this connectionless protocol does not suffer from ever

increasing timeouts like a TCP socket if the underlying IP layer is unreliable (high packet loss.)

It must be kept in mind, however, that the delivery of UDP packets is not guaranteed by the

network; therefore, the background command execution capability of the server is best used for

repetitive measurements where it's not a major problem if occasionally, measurement results are

lost.

The background UDP channel is used for more than communicating command results to the

client. The server has a special feature that allows it to obtain an 'instrument trace' in the

background, optionally resample the trace, and send the result to the client. The 'instrument trace'

is a binary representation of the graphical display found on spectrum analyzers and some

receivers. The server provides a generic capability to extract the trace from the instrument's

response, resample it to a specific horizontal and vertical resolution, and transmit the result as a

UDP packet. This mechanism allows fast, response trace updates even via slow communication

lines.

Lastly, the background UDP channel is also used for transmitting streaming audio data.

3.1.2. Modular Construction

The ISOCSVC.EXE server supports a modular construction. Port driver modules exist as

separate DLLs that can be compiled and distributed independently from the main server.

DLLs that the server must load at startup time are specified in a semicolon-separated list that is

stored in the Registry:

HKLM\Software\Industry Canada\ISOC for Windows\ServerDLLs. The

default set of DLLs with which the package is distributed is

"GPIBSVC.DLL;SOUNDSVC.DLL;TCPIPSVC.DLL;RSIBSVC.DLL;DFSVC.DLL".

DLLs must be created as "MFC Extension" DLLs using Visual C++. A typical server DLL

implements a class derived from CPort, which provides the functionality for a specific port type

(e.g., GP-IB). DLLs are expected to export the following set of functions (all functions are

declared with extern "C" and __declspec(dllexport) to ensure proper linkage):

ISOC for Windows Page 8

PCPORT Create(int nIF, int nType)

This function is called with nIF set to the interface type and nType set to the instrument type.

Interface types are enumerated in ISOCLIB.H (CISOCDev::IF). Modules are free to define

additional interface type values as needed; however, care must be taken to ensure that no two

modules reuse the same interface type value. Instrument type values are not predefined but

loaded from the Registry. The function CISOCDev::FindType() can be used to obtain the

numeric value that corresponds with a specific instrument type identifier string.

void Startup()

Called to allow the module to initialize its operations. For instance, the CI-V module uses

this function to start its listening threads for RS-232 ports on which CI-V interfaces are

present.

void Cleanup()

Called to allow the module to clean up before program termination.

void AddIcon(CImageList *pImageList)

Called to allow the module to add icons and associate them with specific instrument types.

These icons will be used in ISOCCONF.EXE when the instruments are listed.

bool OnInput(int nType)

Called by ISOCCONF.EXE when the user clicks the Inputs button. If a custom Inputs dialog

is shown, the function should return true. If this function returns false, the default Inputs

dialog is displayed by the program.

const char *GetIFName(int nType)

Should return a language-independent string representing the interface name. E.g., "RS-232".

bool Save()

Allows the module to save any extra configuration information in the Registry when

ISOCCONF.EXE terminates. (The function isn't called if the user chooses not to save any

changes.) Should return true on success.

CDialog *SetupDlg(int nDev, int nIF, unsigned char *pSettings)

Creates the subdialog that is displayed with the instrument setup dialog by ISOCCONF.EXE.

The subdialog should provide fields specific to the interface that is implemented by the

module. For instance, the RS-232 module subdialog provides fields for the bit rate, parity,

and stop bit settings of the serial interface.

ISOC for Windows Page 9

3.1.3. Switch Matrix Support

As mentioned previously, the ISOCSVC.EXE server does not provide a virtualized instrument

model. A specific exception was made for switch matrices such as the "Racal Switch Matrix"

instrument.

The reason for this exception is simple. Whereas other instruments are accessed by clients in

exclusive mode (i.e., only one client can access the instrument at any given time) the switch

matrix is a shared resource. The same switch matrix is used for connect the inputs and outputs of

multiple instruments simultaneously. In order to prevent situations where multiple clients may

send conflicting commands to the switch matrix (which, apart from being annoying, may also

cause equipment failure) the switch matrix is, in fact, virtualized, and a special command set is

provided for client programs to access switch matrix resources specific to the instrument to

which they are connected.

3.1.4. Power Bar Support

Similarly to the case of the switch matrix, the remote control power bar is also a shared resource.

For this reason, power bar support is also implemented on the server level, so rather than giving

any client exclusive access to the power bar itself, the server provides instrument-level

functionality for instruments that can be powered down remotely.

3.1.5. Usage

Detailed description of the ISOCSVC.EXE command set can be found in the ISOC for Windows

Application Programming Interfaces manual. Here is a brief overview of a typical session

between a client program and ISOCSVC.EXE:

1. The client establishes a TCP connection to the designated port on the server, and performs

authentication

2. The client uses the /L command to acquire a list of available instruments

3. The client uses the /C command to connect to a specific instrument

4. The client sends instrument-specific commands and reads responses

5. Optionally, other server commands (escaped with a leading slash, '/') are used to change

operating parameters, set up background commands, etc.

6. The client disconnects from the instrument using the /D command and optionally, closes the

socket using /X.

3.1.6. Software Operation

The ISOCSVC.EXE program is based on a Windows NT Service sample application from

Microsoft.

ISOC for Windows Page 10

The main() function is implemented in a Microsoft file, SERVICE.C. Depending on the way the

application was started, main() invokes the function ServiceStart() in MAIN.CPP. This is where

the real work begins.

The ServiceStart() function, after completing some trivial initializations, enters an infinite loop in

which it waits for incoming connections on a TCP socket using a call to the accept() socket

library function. When an incoming connection is established, ServiceStart() creates a new

CTCPThread object and spawns a new thread, using the (static) function

CTCPThread::ThreadProc as the thread function.

The CTCPThread class (declared in SOCKET.H, implemented in SOCKET.CPP) implements

the high-level command functionality for ISOCSVC.EXE. At its heart is the

CTCPThread::ReadTCP() member function that reads, and processes, commands received from

the client.

Commands fall into one of three categories:

 Server commands are escaped with a leading forward slash ('/') character

 Instrument commands are terminated with a semicolon (';') character. When such a command

is sent to the instrument, the instrument is not expected to respond

 Queries are terminated with the question mark ('?') character. After a query, an attempt is

made to read a response from the instrument and send it back to the client.

This synchronous command model is compatible with the operation of instruments connected via

the GP-IB (HP-IB) interface. With other interfaces, certain adjustments were necessary to fit the

model with the instruments' operation, but to date, the model was more than adequate to carry

out full instrument commanding.

3.1.6.1. Server Command Processing

When a new connection to the server is established, the server creates a CTCPThread object and

starts a new thread. This new thread will run CTCPThread::ReadTCP(), a function that reads

commands from the TCP socket.

When a command is received, it is first determined if it is escaped by a leading forward slash

character, in which case it is processed by the server itself. Server commands are processed by

the CTCPThread::ProcessCommand() function.

In addition to the primary thread, a secondary thread is started when a connection is requested to

an instrument. The controlling function for this thread is CUDPThread::ReadUDP(). This is a

pure virtual function; specific implementations exist in classes derived from CUDPThread. In

CInstrThread, ReadUDP performs the processing of instrument traces and background

commands. In CSoundThread, ReadUDP reads and processes digitized sound data.

The classes CTCPThread and CUDPThread, and classes derived from these, are defined and

implemented in SOCKET.H and SOCKET.CPP.

ISOC for Windows Page 11

3.1.6.2. Instrument Commanding

Any command received by CTCPThread::ReadTCP that is not escaped with a leading forward

slash is assumed to be a command destined for the instrument that this session is associated with.

When such a command is received, it is parsed by a simplified parser that checks for the

presence of terminator characters: semicolons and question marks. Individual commands are

extracted and processed one by one. According to conventions borrowed from GP-IB, a

command is assumed to be a query if it ends with a question mark.

Commands and queries are executed using member functions of the class CPort. This class

provides a generalized representation of a communication port that connects the server to an

instrument. The CPort class supports RS-232 and GP-IB connections, as well as instruments

connected via the CI-V protocol. The latter require a helper class, CCIVPort (despite the name, it

is not derived from CPort), in order to arbitrate between multiple CI-V instruments connected via

a single RS-232 port.

Additional support classes include CPowerPort and CSoundPort, which provide functionality

specific to the remote control power bar and the Windows sound device.

These classes are defined in PORT.H, CIV.H, POWER.H, SOUND.H, and implemented in

PORT.CPP, CIV.CPP, POWER.CPP, and SOUND.CPP, respectively.

The core functions in the CPort class are Connect(), Disconnect(), Transact(), and

MultiTransact().

3.1.6.3. Switch Matrix Commanding

Switch matrix commanding is accomplished through the CMatrix class (defined and

implemented in MATRIX.H and MATRIX.CPP). A single object of type CMatrix is created

upon server startup; the constructor for this class is responsible for loading switch matrix

configuration information from the Registry. The server communicates with this object using the

Open and Close member functions which, in turn, utilize the Command function to send

commands to the matrix.

When a client sends a matrix command to the server, the command is parsed by

CTCPThread::DoMatrix(), which calls member functions of CMatrix to carry out the command.

An interesting example is the implementation of the /M? (matrix present?) server command: it

sends a single space character to the switch matrix, checking for a GP-IB error. This one-

character command does nothing; however, if no matrix is present, the command fails, thus

providing a reliable (and fast) method for detecting the presence of the matrix.

3.1.6.4. Audio Capture

The ISOCSVC.EXE server can capture digital audio from a standard Windows multimedia audio

device. Two channels of audio can be captured at 8000 8-bit samples per second. Any client can

request one or both channels of audio; multiple clients can receive audio streams at the same

time.

ISOC for Windows Page 12

In order to facilitate the transmission of digitized audio over slow communication lines, two

methods of compression are used. One method simply halves the sampling rate; the other uses a

public domain GSM compression library for high-efficiency compression. When both

compression methods are used, audio of (barely) acceptable quality can be transmitted over a

PPP connection as slow as 9600 bits per second.

The audio capture device is distinct from the audio input device; this device type is essentially a

dummy device used to allow the user to select audio input sources via the switch matrix.

Whereas the audio capture device is used in non-exclusive mode, audio input devices can be

opened by only one client at any given time.

In addition to sending audio to a remote client, the server is also capable of recording audio in a

.WAV file, using an annotated format that is compatible with the shareware application RecAll

PRO.

3.2. The ISOCLIB.DLL support library

All ISOC components, including the ISOCSVC.EXE program, make extensive use of the

ISOCLIB.DLL library. This library provides support functions in three areas: instrument and

matrix configuration data structures, helper functions, and units conversion.

3.2.1. Data Structures

The ISOCLIB.DLL library relies on the Standard Template Library (STL) to implement several

related lists for switch matrix operation.

CISOCDevList is a list of CISOCDev objects, each of them representing a virtual instrument on

the server.

CISOCMatList is a list of CISOCMat objects. Each object represents a signal source that can be

connected up via the switch matrix.

CISOCInpList is a list of CISOCInp objects. A CISOCInp object represents a signal source for a

specific instrument and the associated switch matrix command. Each virtual instrument has an

associated CISOCInpList object containing the list of valid inputs for that instrument.

CISOCConList is a list of CISOCCon objects. A CISOCCon object is a connector; this is used

with instruments such as the ICOM R-9000 receiver that has multiple signal source connectors

on the back panel. Each CISOCCon object contains the necessary switch matrix commands to

connect a signal to the respective connector. Each instrument as an associated CISOCConList

that represents the instrument's list of back-panel connectors.

In addition to these structures, the ISOCLIB.DLL library also defines the following structures:

 PACKEDDATETIME is a "packed" date/time stamp format used when transmitting trace

data blocks from the server to the client;

 TRACEHDR is the header block for trace data.

ISOC for Windows Page 13

Lastly, the ICOMCalibration class is used to create ICOM receiver calibration data blocks and

save these to the Registry.

3.2.2. Helper Functions

The ISOCLIB.DLL also provides several helper functions that are used throughout the ISOC

suite. These functions can be loosely bundled into several categories.

3.2.2.1. Authentication Functions

Two complementary functions are provided to facilitate client-server authentication.

bool ISOCAuthenticateClient(SOCKET s)

bool ISOCAuthenticateServer(SOCKET s)

3.2.2.2. SYSTEMTIME Operators

This group consists of several comparison and arithmetic operators for the SYSTEMTIME type.

These operators simplify date/time arithmetic.

bool operator<(const SYSTEMTIME &st1, const SYSTEMTIME &st2)

bool operator>(const SYSTEMTIME &st1, const SYSTEMTIME &st2)

bool operator<=(const SYSTEMTIME &st1, const SYSTEMTIME &st2)

bool operator>=(const SYSTEMTIME &st1, const SYSTEMTIME &st2)

bool operator==(const SYSTEMTIME &st1, const SYSTEMTIME &st2)

__int64 operator-(const SYSTEMTIME &st1, const SYSTEMTIME &st2)

const SYSTEMTIME operator+(const SYSTEMTIME &st, int n)

const SYSTEMTIME &operator+=(SYSTEMTIME &st, int n)

const SYSTEMTIME operator-(const SYSTEMTIME &st, int n)

const SYSTEMTIME &operator-=(SYSTEMTIME &st, int n)

3.2.2.3. Data Conversion

Data conversion functions assist in the conversion between standard Windows and ISOC-

specific data types.

bool SystemTimeToPackedTime(SYSTEMTIME *pst, PACKEDDATETIME *ppdt)

bool PackedTimeToSystemTime(PACKEDDATETIME *ppdt, SYSTEMTIME *pst)

3.2.2.4. Data Communication

Data communication functions are utilized throughout the ISOC suite. Their main purpose is to

facilitate length-prefixed data transmissions on a communications socket.

int sendsz(SOCKET s, const char *pszText, int flags = 0)

int sendprintf(SOCKET s, char *pszFormat, ...)

int sendwithlength(SOCKET s, const char *buf, unsigned short len, int flags,

const struct sockaddr FAR *to, int tolen)

int sendstr(SOCKET sockfd, const char *p, struct sockaddr *pAddr, int

nAddrLen)

int recvlength(SOCKET s, int flags)

int recvlendata(SOCKET s, char FAR *buf, int len, int flags)

ISOC for Windows Page 14

int recvwithlength(SOCKET s, char FAR* buf, int len, int flags)

3.2.2.5. Registry Functions

Registry functions provide some additional functionality for moving, copying, and deleting

registry key subtrees.

LONG RegWipeKey(HKEY hKey, LPCTSTR lpszSubKey)

LONG RegCopyKey(HKEY hKey, LPCTSTR lpszSubKey, HKEY hNewKey, LPCTSTR

lpszName)

LONG RegMoveKey(HKEY hKey, LPCTSTR lpszSubKey, HKEY hNewKey, LPCTSTR

lpszName)

3.2.2.6. Miscellaneous Helper Functions

bool IsWindows95()

char hex2char(int n)

int char2hex(char c)

bool GetWeekBase(SYSTEMTIME *st)

bool IsValidDate(SYSTEMTIME &st)

void DrawButton(HDC dc, RECT rect, int nType, UINT itemState)

3.2.3. Unit Conversion

Six functions are provided for easy parsing and formatting of frequency, level, and time values:

double ParseFrq(const char * pszFrq)

double ParseLvl(const char * pszLvl, int nAUnit, double fZ)

double ParseTime(const char * pszTime)

FormatFrq(char * pszFrq, double fVal, FRQ_UNIT nUnit, int nDec)

FormatLvl(char * pszLvl, double fVal, LVL_UNIT nUnit, int nDec)

FormatTime(char * pszTime, double fVal, TIME_UNIT nUnit)

Permissible unit values are declared in UNITS.H. The ParseLvl function takes an extra

parameter (fZ) that represents the input impedance of the device for which the conversion is

performed; without this value, it would not be possible to convert, for instance, between dBV

and dBm.

3.3. ISOCSCAN.EXE

3.3.1. Overview

The second main server component after ISOCSVC.EXE is ISOCSCAN.EXE, the background

scanning service application.

The purpose of ISOCSCAN.EXE is quite simple: maintain a set of schedule entries, activate

instruments at scheduled times, and collect scan data. The implementation, however, differs

depending on the type of instrument in use.

ISOC for Windows Page 15

Presently (ISOCSCAN.EXE is about to undergo a revision) the background scanner supports

scanning on two types of instruments: the ESN receiver and the ICOM receiver. In addition,

ISOCSCAN.EXE also supports scheduled recording of audio.

3.3.2. Modular Construction

Like ISOCSVC.EXE, the ISOCSCAN.EXE server is now also modularized. Instrument-specific

scanner implementations live in separate DLLs which are loaded by the main server at startup

time. These DLLs can be compiled and distributed separately from the main application suite.

DLLs that the server must load at startup time are specified in a semicolon-separated list that is

stored in the Registry:

HKLM\Software\Industry Canada\ISOC for Windows\ScannerDLLs. The

default set of DLLs with which the package is distributed is
"ANTSCAN.DLL;DC4SCAN.DLL; ESMBSCAN.DLL;ESNSCAN.DLL;ICOMSCAN.DLL;\

 IFRSCAN.DLL;SMHSCAN.DLL;SNDSCAN.DLL;SESCAN.DLL;ROTSCAN.DLL;\

 TCKSCAN.DLL;DFSCAN.DLL;GPSSCAN.DLL;OARSCAN.DLL;RSSCAN.DLL".

DLLs must be created as "MFC Extension" DLLs using Visual C++. A typical server DLL

implements a class derived from CPort, which provides the functionality for a specific port type

(e.g., GP-IB). DLLs are expected to export the following set of functions (all functions are

declared with extern "C" and __declspec(dllexport) to ensure proper linkage):

class CScan *Create(class CScanSession *pThis,

 CISOCDevList::iterator iInstrument, const char *pszESN)

This function is called to create a CScan-derived object that will perform the scanning.

void Validate(CISOCDevList *pList)

This function is called when the server starts. It allows the module to validate the presence of

any instruments that the server will recognize. For instance, the ESN scanner module's

Validate function removes any ESN receivers that share the GP-IB bus with other

instruments, as such receivers cannot be used for background scanning (which, in case of the

ESN, requires exclusive access to the GP-IB bus.)

bool Support(int nType)

Returns true if the instrument type is supported. The numeric value is not predefined, but

determined at runtime when instrument types are loaded from the Registry. The string

representation of the instrument type can be retrieved using CISOCDev::FindType().

const char *HeaderString(int nType, const char *pszINI)

Returns a string header that is stored in the ESN result file. The ESN file format is a format

predefined by Industry Canada.

ISOC for Windows Page 16

3.3.3. Usage

Detailed description of the ISOCSCAN.EXE command set can be found in the ISOC for

Windows Application Programming Interfaces manual. Here is a brief overview of a typical

session between a client program and ISOCSCAN.EXE:

1. The client establishes a TCP connection to the designated port on the server, and performs

authentication

2. The client obtains a list of schedule entries

3. The clients sends updated schedule entries to the server

4. The client monitors the progress of a scan by sending the appropriate queries

5. The client terminates the connection

3.3.4. Software Operation

The ISOCSCAN server has two distinct functions:

1. Executing background scans at scheduled times

2. Servicing client connections

The ISOCSCAN application is based on the generic Microsoft Windows NT service application

example. Its main starting function is ServiceStart(), found in MAIN.CPP. This function

performs the necessary initializations and then enters an infinite loop, awaiting incoming client

connections. When a client connection is established, it is serviced by CScanSession::Interact(),

a function that is called from within a separate thread of execution in order to free up the main

thread for processing other incoming connections.

Background scanning functionality is encapsulated within the CScanSession class. Each

CScanSession object corresponds with a background task. Background execution is initiated by

starting a secondary thread with the CScanSession::Scheduler function. This function waits until

the time of the next scheduled background task, and then initiates the background task by

creating yet another thread with the CScanSession::Scan member function.

Whereas CScanSession objects represent all scheduled sessions, CScan objects are used to carry

out the actual scanning task. The CScan class provides generic functionality for parsing input

files, building frequency lists, and connecting to the ISOCSVC.EXE server for reserving, and

communicating with actual instruments. Classes derived from CScan contain implementations

specific to one instrument type or another. Since significant differences exist in the way scanning

is carried out on different instrument types, these are discussed separately below.

ISOC for Windows Page 17

3.3.4.1. ESN Scanning

The ESN receiver has a special mode of operation where it scans a preloaded list of frequencies

at the maximum speed the radio hardware permits. Results are communicated via the GP-IB bus

with the ESN receiver acting as bus controller. This mode of operation requires that the ESN

receiver be the only instrument on the bus; for this reason, many ISOC server installations use

two GPIB cards on the receiver, one of which is dedicated to the ESN receiver.

Because of this special mode of operation, ESN scanning is not performed by ISOCSVC.EXE. A

connection is made to the ISOCSVC server, but it is only to reserve the instrument, in order to

ensure that no other user attempts to access it while a scan is being performed. The background

scanner server, ISOCSCAN.EXE, communicates with the ESN receiver via the GPIB bus on its

own.

ESN scanning is carried out by the CESNScan::Scan() function. This function sets up the

receiver by transmitting the frequency list and other settings, initiates scan operation, and then

passes GPIB bus control to the receiver itself. The function then enters a loop in which it reads

data from the receiver and saves it to the results file.

3.3.4.2. ICOM Scanning

Background scanning with the ICOM receiver differs from ESN scanning in two important ways.

First, scanning is carried out with the server computer in control; scan frequencies and level

readout commands are sent interactively. Second, the scanner server doesn't communicate with

the instrument directly; all communication takes place using the ISOCSVC.EXE instrument

server.

A problem specific to ICOM receivers is the unpredictable settling time of the receiver during

fast scanning. The solution to this problem is a "hack" in the ISOCSVC.EXE server itself, in its

CCIVPort::ProcessIC() member function. A simple algorithm checks for any large level

fluctuations and if such fluctuations are detected, the level readout is repeated. If necessary,

multiple level readouts are attempted, although the acceptable fluctuation is increased with every

readout, in order to ensure that a successful readout is obtained within a reasonable time.

3.3.4.3. Audio Recording

Audio recording is carried out entirely by the ISOCSVC.EXE server. The role of the background

scanning server is reduced to merely sending the appropriate commands to ISOCSVC.EXE to

initiate and/or stop an audio recording session. Correspondingly, the function

CSoundScan::Scan() is essentially a placeholder that merely waits for the scan to end.

3.4. Auxiliary Programs

In addition to the two main service applications, ISOCSVC.EXE and ISOCSCAN.EXE, several

auxiliary programs are provided to manage an ISOC server.

ISOC for Windows Page 18

3.4.1. The ISOC Server Configurator

The ISOC Server Configurator, ISOCCONF.EXE, provides a graphical user interface for setting

up instruments. Its user interface elements correspond closely with data structures defined in the

ISOCLIB.DLL library. It also loads and accesses server DLLs, which provide the

implementations for port-specific subdialogs that are displayed when an instrument is

configured.

The main dialog ("ISOC Server Configurator") contains a list of all instruments on the server.

This list corresponds with the CISOCDevList class in ISOCLIB.DLL. Details for each

instrument can be viewed using the Edit button; these details correspond with the data content of

CISOCDev objects.

The Inputs button invokes the ISOC Signal Sources dialog. The list herein is the list of all

available signal sources on the server's switch matrix, represented in ISOCLIB.DLL by the

CISOCMatList class. Details of individual signal sources can be viewed by clicking Edit; the

dialog that appears shows data fields that correspond with the data content of CISOCMat objects.

For each instrument displayed in the Instrument Configuration dialog, you can click the Inputs

button that shows the matrix commands used for connecting a specific signal source to this

instrument. This list corresponds with the CISOCInpList object associated with the instrument in

ISOCLIB.DLL.

Lastly, for some instruments (notably ICOM receivers) a similar list exists that defines the

instrument's input connectors. This list can be viewed by clicking the Connectors button, and it

corresponds with the CISOCConList object associated with the instrument.

The ISOC Server Configurator also allows the configuration of site-specific parameters, such as

the site's name, logging preferences, or the GP-IB parameters of the switch matrix. All

information is saved in the Windows Registry. No attempt is made to cause running server

components (namely, ISOCSVC.EXE and ISOCSCAN.EXE) to re-read the Registry; to effect a

re-read, these server components must be restarted.

3.4.2. ICOM Calibrator

The ICOM calibrator is a 32-bit command-line utility that carries out a calibration sequence on

ICOM receivers. Instrument commanding is carried out through ISOCSVC.EXE, so this main

ISOC server must be running during calibration. Calibration consists of two distinct steps. First,

the instrument's behavior is characterized in the frequency domain, and a set of representative

frequencies is created. Second, for each frequency in the list, level measurement is performed to

identify the ICOM level (a value between 0 and 255) with a known signal level. The resulting

data set is saved in the Windows Registry and is used subsequently for all operations involving

the receiver.

3.4.3. Rotator Calibrator

The Rotator Calibrator is an interactive utility with a simply GUI that allows the user to

determine the A/D converter values associated with the end positions of the horizontal and

ISOC for Windows Page 19

vertical actuators in the rotator. It is assumed that the rotator's behavior is linear (i.e., that the

actual rotation angle is a linear function of the A/D converter readout value.)

In addition to this calibration function, the rotator calibrator also allows the user to specify

rotator parameters, such as its operating range, offsets, and obstruction lists. All information is

saved in the Windows Registry, and is used during all subsequent operations involving the

rotator.

The Rotator Calibrator communicates with the rotator directly through the RS-232 port.

3.4.4. The ISOC Service Manager

The ISOC Service Manager is a very simple utility that is used to selectively start or stop

ISOCSVC.EXE and ISOCSCAN.EXE, when these applications run in the background as

Windows NT services.

3.4.5. The Installation Support Library

The ISOC Installation Support Library contains extensions used in conjunction with InstallShield

Express during application removal. Specifically, the library is used to remove ISOC service

applications from the Windows NT Registry, and to wipe all Registry settings (including settings

not created during installation) from under HKCU\SOFTWARE\Industry Canada\ISOC for

Windows.

ISOC for Windows Page 20

4. Client Components

On client computers, two ISOC applications are installed: the ISOC client (ISOCNT.EXE) and

the ISOC scheduler (ISOCSCHD.EXE). The ISOC client is the primary interface to remote

ISOC servers that the instruments hosted there. The ISOC scheduler provides a GUI for

managing background scanning tasks that are executed by a background scan server.

4.1. Bilingual Operation

All ISOC client applications are capable of operating in both English and French. This is

accomplished the following way:

1. French-language versions of all user interface elements (resources) are created and

maintained along with the English-language elements. The multi-language resource file

editing capabilities of Visual Studio are used for this purpose.

2. Custom compilation steps are included to create French-language versions of the

applications' resource files. These files are saved using the .FRC filename extension.

3. A Registry setting (that can be altered by selecting the Language option from the View menu

in ISOCNT.EXE) determines if English, French, or the system default language should be

used.

4. In each application that supports multiple languages, if the language setting is other than

English, the .FRC file is loaded with a call to the system function LoadLibrary(), and

activated with a call to AfxSetResourceHandle().

5. Applications support separate English and French-language Help files. During application

startup, the name of the correct Help file is determined from the current language setting.

4.2. The ISOC client application

The ISOC client application appears to the user as a multiple-document interface (MDI) window,

within which individual windows are displayed representing remote instruments. The client-

server model of the ISOC suite permits a single copy of the ISOC client to connect to

instruments on multiple servers simultaneously.

The user interacts with the ISOC client by selecting the Connect command from the File menu.

This invokes a dialog (ISOC Servers) where the user can connect to a specific server (selected by

IP address) and list the available instruments there. When a specific instrument is selected and

the Connect button is clicked, an MDI child window representing the selected instrument is

opened.

ISOC for Windows Page 21

4.2.1. Document-View Architecture

Internally, the ISOC client follows the document-view paradigm of Microsoft Foundation

Classes (MFC) applications. The current settings of a virtual instrument are represented by a

document object, which allows, among other things, saving these settings to disk. Visual

presentation of the instrument is performed by the corresponding view object.

4.2.1.1. Virtual Instrument Document Classes

The document classes representing virtual instruments are relatively simple. A typical document

class, such as that of the HP-8594E spectrum analyzer (CHP8594EDoc) contains several data

members representing instrument parameters, and a customized Serialize() member function for

saving these settings to a disk file.

Although remote programming is not presently supported, the document classes are designed

with programmability in mind. A future version of the ISOC may operate as an Automation

server, permitting external programs (e.g., scripts written in Visual Basic) to control instruments

through these document objects.

Currently, the following document objects are defined in the ISOC client:

CADVR3261ADoc Advantec R-3261A spectrum analyzers

CDummyDoc Dummy instruments (instruments with no functionality other than

input selection) such as test antennae or audio inputs

CHP8594EDoc Hewlett-Packard 8594E spectrum analyzers

CIFRCOM120BDoc IFR COM-120B receiver/analyzer

CISOCNTDoc Generic instrument support (for debug purposes)

CPCRDoc PC-R1000 receiver support (incomplete, experimental)

CRotatorDoc Antenna rotators

CRSESNDoc Rhode & Schwarz ESN receivers

CRSSMHDoc Rhode & Schwarz SMH signal generators

CSERDDoc Support for Spectrum Explorer control via Remote Desktop

CSoundDoc Audio output

Additionally, document objects defined in external DLLs (see below the subsection on modular

design) include:

CCRCSEDoc Support for the CRC Spectrum Explorer

CFLEXDoc Support for FLEX tone decoders

CICOMDoc ICOM R-8500 and R-9000 receivers

CDC44XDoc OptoElectronics DC-440 and DC-448 tone decoders

ISOC for Windows Page 22

CRSESMBDoc Rohde & Schwarz ESMB support

CRSFSPDoc Rohde & Schwarz FSP spectrum analyzer

CTBTCKDoc Telonic-Berkeley TCK filter

Objects of these types are not created directly. Instead, they are constructed using the MFC

document template mechanism. Construction occurs in CServersDlg::OnConnect() in response to

the user's clicking the Connect button in the ISOC Servers dialog, after the correct template is

identified and selected.

4.2.1.2. Virtual Instrument View Classes

All the visual interface elements for virtual instruments are encapsulated within the

corresponding view class. In the current ISOC implementation, two distinct types exist: those

derived directly from CFormView and those derived from CMultiForm.

CFormView-derived view classes present a simple "flat" interface model. In the case of more

complex interfaces, such as the HP-8594E spectrum analyzer, a tabbed dialog approach is used

to unclutter the visual area. Subdialogs are derived from the class CTabDlg that manages

integration of the subdialogs with the main form view area. This solution, however, was found

less than satisfactory by end users, so a new approach was developed.

This new approach makes use of a special class, CMultiForm, which itself is derived from

CFormView. CMultiForm, in conjunction with another class, CSubForm (itself derived from

CDialog) provide a simple generic "MDI within MDI" style user interface that made it possible

to implement the GUI for various areas of instrument functionality in the form of individual sub-

windows that can be moved within the client area of the instrument view.

CMultiForm/CSubForm also support the automatic saving and reloading of window positions.

Some instrument views are also derived from CInstrumentDlg using multiple inheritance.

CInstrumentDlg encapsulates some functionality related to the "tune-with" capability of the

ISOC client application. In future releases, more generic (common to all instruments)

functionality may be migrated from the individual instrument view classes to CInstrumentDlg.

The present set of ISOC view classes is as follows:

CADVR3261AView Advantec R-3261A spectrum analyzer

CADVR3261AControlDlg Advantec "Control" tab

CADVR3261AMarkerDlg Advantec "Marker" tab

CADVR3261ASetupDlg Advantec "Setup" tab

CADVR3261AStateDlg Advantec "State" tab

CADVR3261ACalibrateDlg Advantec "Calibrate" subdialog ("State" tab)

CADVR3261AFileDlg Advantec "File" subdialog ("State" tab)

ISOC for Windows Page 23

CADVR3261ASoundDlg Advantec "Sound" subdialog ("State" tab)

CADVR3261ATraceDlg Advantec "Trace" tab

CCRCSEView CRC Spectrum Explorer

CDC44XView OptoElectronics DC-440/DC-448 tone decoders

CCRCSEHistogramDlg CRC SE "Histogram" panel

CCRCSEModsDlg CRC SE "Modulation" panel

CCRCSEMsrmntsDlg CRC SE "Measurements" panel

CCRCSEOpsDlg CRC SE "Operations" panel

CCRCSESettingsDlg CRC SE "Settings" panel

CDummyView Dummy instrument (antenna selector only)

CHP8594EView Hewlett-Packard 8594E spectrum analyzer

CHP8594EControlDlg HP-8594E "Control" tab

CHP8594EMarkerDlg HP-8594E "Marker" tab

CHP8594ESetupDlg HP-8594E "Setup" tab

CHP8594EStateDlg HP-8594E "State" tab

CHP8594ECalibrateDlg HP-8594E "Calibrate" subdialog ("Control" tab)

CHP8594EDemodDlg HP-8594E "Demod" subdialog ("Control" tab)

CHP8594EFileDlg HP-8594E "File" subdialog ("Control" tab)

CHP8594ETraceDlg HP-8594E "Trace" tab

CICOMView ICOM R-8500 and R-9000 receivers

CICOMMainDlg ICOM "Main" subdialog

CICOMMeterDlg ICOM "Meter" subdialog

CICOMScanDlg ICOM "Scan" subdialog

CICOMStateDlg ICOM "State" subdialog

CISOCNTView Generic instrument view (debug only)

CSetupDlg Generic setup subdialog

CTraceDlg Generic trace subdialog

CPCRView ICOM PC-R1000 view (incomplete, experimental)

CPCRMainDlg

CPCRMarkerDlg

CPCRMeterDlg

CPCRScopeDlg

CPCRSettingsDlg

ISOC for Windows Page 24

CPCRTracesDlg

CRotatorView Antenna rotator view

CRotatorLvlDlg Antenna rotator level subdialog

CRotatorMainDlg Antenna rotator main subdialog

CRSESNView Rhode & Schwarz ESN receiver

CRSESNMainDlg ESN "Main" subdialog

CRSESNMeterDlg ESN "Meter" subdialog

CRSESNSpecialDlg ESN "Special" subdialog

CRSESNStateDlg ESN "State" subdialog

CRSESNTraceDlg ESN "Trace" subdialog

CRSESNAppearanceDlg ESN "Appearance" tab ("Trace" subdialog)

CRSESNMarkerDlg ESN "Marker" tab ("Trace" subdialog)

CRSESNSettingsDlg ESN "Settings" tab ("Trace" subdialog)

CRSESNTracesDlg ESN "Traces" tab ("Trace" subdialog)

CRSESNTTDlg ESN "Time Traces" subdialog

CRSSMHView Rhode & Schwarz SMH signal generator

CSoundView Sound output virtual instrument

4.2.1.3. Document/View Operation

In the ISOC virtual instrument implementation, most of the work is actually performed by the

view class or classes associated with subdialogs within the view.

Most activity is centered around a single CISOCInstrument object, which represents an

ISOCInstrument ActiveX control. This object is defined as a dialog control and it is created

automatically when the dialogs are constructed from templates by the MFC framework. View

and dialog member functions frequently reference the Send() and Transact() member functions

of this object to exchange data with the remote server.

Another recurring feature in virtual instrument implementations is the use of a common

architecture for instrument parameters. Parameters are defined as an array of CParam objects,

CParam being a local subclass of the document class associated with the instrument. This array

of CParam objects is referenced in several places, including:

 The Serialize() member function of the document class, for saving instrument settings to

disk;

 The DoDataExchange() member function of the view class, for exchange parameters between

the GUI and the remote server;

ISOC for Windows Page 25

 The GetParam() member function of the document class, and the related GetPar(),

InvalidatePar(), and InvalidatePars() member functions in the view class, for parameter

extraction.

Another recurring feature of the virtual instrument view classes is the use of a CKnobCtrl object

and a corresponding array of CScroll objects. This array references a pair of controls: an edit

control representing a value, and a (usually hidden) selector radio button. Using this control

arrangement, a single rotating knob can be used to "tune" several scrollable parameters within

the user interface.

Putting these features together, here's a brief overview of how a typical virtual instrument

operates:

1. The view is created, causing the MFC framework to load and initialize any dialog templates.

This implicitly creates an ISOCInstrument ActiveX control.

2. During initialization (usually in OnInitialUpdate) a connection is established to the remote

ISOC server using member functions of the ISOCInstrument control, and an instrument is

reserved. If any of these steps fail, the view is destroyed and an error message is displayed.

3. The instrument is reset and its current settings are queried, using the DoDataExchange()

member function of the view (and its child windows, if any) to populate all GUI elements. At

this point, the view is ready for user interaction.

4. Member functions are invoked in response to the user's actions. These functions

communicate with the remote ISOC server using the Send() and Transact() member functions

of the ISOCInstrument object. They also invalidate any parameters that need to be re-queried

from the server; the re-query takes place in DoDataExchange().

5. The ISOCInstrument object may provide a visual interface (trace view) that is updated in

response to data received in the background. If additional background data is received, this is

processed by the OnBackgroundReceive() member function of the view.

4.2.2. Modular Construction

Like the ISOC server components, the ISOC client application can also utilize instrument

support modules that are in the form of external DLLs. These external modules implement the

document and view classes that are required to support a specific instrument or family of

instruments. These support DLLs can also be used to construct derived instrument types.

The modular design is facilitated in part by the ISOCUI library that includes much of the code

that is common to all instruments. Individual instrument document and view classes are usually

classes derived from CInstrumentDoc and CInstrumentDlg, which are defined in this library.

The archetype instrument support module is ICOM.DLL. The code in this module was split from

the main ISOCNT executable in order to facilitate the reuse of the ICOM code for the purposes

of building DF support without unnecessary code duplication. Although no effort was made to

split most older instrument support implementations from the main ISOCNT code branch,

ISOC for Windows Page 26

support for newer instruments was implemented in the form of DLL modules. Currently, the

following instrument types are supported this way:

 Rohde & Schwarz FSP spectrum analyzer

 Telonic-Berkeley TCK filter

 ICOM receivers

 DC-44X tone decoders;

 FLEX tone decoders

 Rohde & Schwarz ESMB receiver

 DF instruments.

The list of DLLs that are to be loaded when ISOCNT.EXE starts is stored in the Registry under

HKLM\Software\Industry Canada\ISOC for Windows\ClientDLLs. The

default set of DLLs is

"RSFSP.DLL;TBTCK.DLL;ICOM.DLL;DC44X.DLL;FLEX.DLL;ESMB.DLL;DF.DLL".

4.2.3. Additional Support Classes

In addition to classes representing documents, views, and subdialogs, additional classes exist to

represent other areas of the ISOC application user interface.

4.2.3.1. MFC Framework Support

In addition to two classes generated by the MFC AppWizard, CMainFrame and CChildFrame, a

third class, CFixedSizeFrame, provides modified frame window behavior for instruments that are

represented by a fixed size window.

4.2.3.2. ActiveX Controls

The current implementation utilizes three ActiveX controls. CISOCInst represents

ISOCInstrument controls; CMETERCtrl represents V-U meter objects, and CKnob represents

knob controls. Meters and knobs are not ISOC-specific components, but full source code for

these components is provided.

4.2.3.3. The ISOC Servers Dialog

The ISOC Servers dialog appears in response to the user selecting the Connect command from

the Site menu. This dialog allows the user to connect to a server of choice and obtain the list of

available instruments there. In order to facilitate this, the dialog template associated with this

control contains an invisible ISOCInstrument object; all communication with the server is

performed through this object.

4.2.3.4. Miscellaneous Dialogs

The CAboutDlg class represents the application's "About" dialog that displays copyright and

version information. The CCalibrateDlg class represents a dialog that is invoked when the user

requests instrument calibration and the selected instrument is temporarily disabled. This dialog is

ISOC for Windows Page 27

usually displayed so as to simulate modal behavior, but rather than disabling the entire

application window, only interactions with the specific instrument are prevented.

4.2.3.5. Debugging

The CDebugDlg provides a command-line interface and it is used for debugging purposes only.

4.2.3.6. Configuration Dialogs

The CColorOptionsDlg is displayed for instruments for which color selection for the visible trace

area is permitted.

The CLangDlg is displayed when the user selects the Language command from the View menu,

and allows the selection of English, French, or the system default language for the application's

user interface.

4.3. The ISOC scheduler

The ISOC Scheduler provides a two-level user interface that lets the user monitor and manage

scheduled background scanning tasks on a remote ISOCSCAN.EXE server.

4.3.1. Description

The main dialog of the ISOC Scheduler, represented by the CISOCSCHDDlg class, provides a

list of all scheduled tasks on the selected server. The list displayed here corresponds with the list

obtained from ISOCSCAN.EXE using the 'L' command (for a list of ISOCSCAN.EXE

commands, please consult the ISOC for Windows Application Programming Interfaces manual.)

Clicking the Edit button for any of the entries listed here invokes the "Edit existing schedule

entry" dialog that provides a user interface for entering/updating schedule information.

This secondary dialog is actually a tabbed dialog; the three pages are labeled Setup, Schedule,

and Files. The Setup page (CSetupDlg class) allows selecting the instrument for scheduled

background operation. Depending on the type of instrument selected, the area labeled Instrument

Parameters may contain an additional subdialog (CESNDlg along with CESNAdv, CICOMDlg,

and CSNDDlg) that contains settings specific to that instrument.

The Schedule tab (CScheduleDlg) contains a custom ActiveX control that represents a weekly

grid of 7×24 hours. The user can use the mouse to conveniently select any combination of hours

that will then be used in the schedule.

The Files tab (CFilesDlg, along with CAddInputFilesDlg and CSelectOutputFileDlg) provides a

means to select input and output files. In place of a set of input files, it is also possible to select a

frequency range for scanning, in which case the list of scan frequencies will be automatically

generated by the server.

ISOC for Windows Page 28

4.3.2. Modular Design

The ISOC scheduler has also been converted to a modular design. Support for specific

instrument types is implemented in the form of DLLs.

The list of DLLs that are to be loaded when ISOCCRON.EXE starts is stored in the Registry

under HKLM\Software\Industry Canada\ISOC for Windows\CRONDLLs. The

default set of DLLs is
"ANTCRON.DLL;DC4CRON.DLL;ESMBCRON.DLL;ESNCRON.DLL;ICOMCRON.DLL;\

IFRCRON.DLL;SMHCRON.DLL;SNDCRON.DLL;SECRON.DLL;ROTCRON.DLL;\

TCKCRON.DLL;DFCRON.DLL".

4.4. The ISOCInstrument.DLL control

The ISOCInstrument ActiveX control encapsulates the following core areas of ISOC client

functionality:

1. Communication with an ISOC server, including instrument commanding

2. Background data reception

3. Display of graphical traces

4. Sound playback

Detailed information about the ISOCInstrument control and its usage can be found in the ISOC

for Windows Application Programming Interfaces manual.

4.5. Non-ISOC Specific Components

The ISOC application suite uses a set of non-ISOC specific components that are part of the

source distribution.

4.5.1. MULTISND.EXE

MULTISND.EXE is a simple, stand-alone COM server that provides digital audio mixing. In

place of a lengthy explanation, here's a simple example program that uses MULTISND.EXE to

play back a machine-generated sound. Note that you can run several copies of this program

(perhaps with altered parameters) at the same time, with MULTISND.EXE properly mixing the

resulting audio (that being the whole purpose of this simple client-server mechanism.)

// To compile, type: CL HCL.CPP OLE32.LIB OLEAUT32.LIB

#include <windows.h>

#include <stdio.h>

#include <conio.h>

void main(void)

{

ISOC for Windows Page 29

 CLSID clsid;

 LPUNKNOWN punk;

 LPDISPATCH pdisp;

 DISPID dispid;

 OLECHAR *pszProp = L"Play";

 DISPPARAMS dispparams;

 UINT uArgErr;

 VARIANTARG vArg;

 vArg.bstrVal = SysAllocStringByteLen(NULL, 5120);

 char *pB = (char *)vArg.bstrVal;

 for (int i = 0; i < 2560; i++)

 {

 pB[i] = pB[i + 2560] = ((i >> 8) << 3) * ((i % 13 > 8) ? 1 : 0);

 }

 OleInitialize(NULL);

 CLSIDFromProgID(OLESTR("MULTISND.MultiSound"), &clsid);

 CoCreateInstance(clsid, NULL, CLSCTX_SERVER, IID_IUnknown, (LPVOID

*)&punk);

 punk->QueryInterface(IID_IDispatch, (LPVOID *)&pdisp);

 punk->Release();

 pdisp->GetIDsOfNames(IID_NULL, &pszProp, 1, LOCALE_SYSTEM_DEFAULT,

&dispid);

 dispparams.cArgs = 1;

 dispparams.cNamedArgs = 0;

 dispparams.rgdispidNamedArgs = NULL;

 dispparams.rgvarg = &vArg;

 vArg.vt = VT_BSTR;

 for (i = 0; i < 100; i++)

 {

 if (_kbhit()) break;

 pdisp->Invoke(dispid, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, &dispparams, NULL, NULL, &uArgErr);

 Sleep(300);

 }

 SysFreeString(vArg.bstrVal);

 pdisp->Release();

 OleUninitialize();

}

4.5.2. The METER control

The METER custom control provides a simple graphical "V-U meter" style display. The control

has the following properties:

BackColor, FillColor, and ForeColor control the appearance of the control.

The Caption property represents the text that may appear inside the control area.

The Appearance parameter is a numeric value representing the meter's present position between

the Minimum and Maximum values.

ISOC for Windows Page 30

The Ticks and Marks parameters define the number of small and large markers displayed. The

defaults are 30 ticks and 5 marks.

The Minimum and Maximum parameters represent the lower and upper end of the scale.

4.5.3. The KNOB control

The Knob control provides a simple user interface element that works in a fashion similar to a

rotary knob on a radio instrument. Clicking the control with the mouse and performing a rotary

motion can be used to adjust the control; when this occurs, messages are sent to the application

indicating that the control position has changed.

The Knob control provides the following properties:

The control's appearance and color are controlled by BevelColor, SpotColor, BevelSize,

SpotSize, BevelRimColor, TickColor, BevelShadowColor, SpotShadowColor, SpotRimColor,

TickSize, BevelRimSize, SpotRimSize, and Ticks.

The control's positioning is controlled by the Resolution and Position parameters.

When the user interacts with the control, the control sends a Scroll event to the application. The

even has a single parameter that is a signed "delta" value indicating the amount by which the user

adjusted the control. The control also captures the mouse; the application can use the

GetCapture() windows function to determine if the mouse is still being captured by the control.

4.5.4. The SCHEDULE control

The Schedule control displays a weekly grid of 168 hours. The user can interact with the control

to select any combination of hours, or invert the selection for a specific day, range of days, hour,

range of hours, or the whole week by clicking on the appropriate header areas.

The Schedule control provides only two properties:

The Hours property can be used to read the user's current selection. It is a bitmask of 24 bits; an

extra parameter determines which day of the week is referenced.

The Language property can be used to cause the control to display day names in English or

French.

When the user interacts with the control, the control generates an Update event that can be

captured by the controlling application.

ISOC for Windows Page 31

Appendix A. Code Organization and the Compilation Process

Source code for post 2.13 versions of the ISOC is packaged in the form of two Visual C++

solutions: most components are organized as projects in the solution “MASTER”, whereas DF

components are projects in the solution “MASTER ISOCDF”.

Each major ISOC component is packaged as a separate Visual C++ project. The project

directories are the following:

ICOMCAL The ICOM Calibrator application

IPSWEMU IP switch matrix emulator (not in MASTER.sln)

ISOCCONF The ISOC server configuration utility

ISOCCRON The ISOC Scheduler client application

ISOCCRON\ANDCRON Antenna scan setup dialog library

ISOCCRON\DC4CRON DC-4XX scan setup dialog library

ISOCCRON\ESMBCRON ESMB scan setup dialog library

ISOCCRON\ESNCRON ESN scan setup dialog library

ISOCCRON\ICOMCRON ICOM scan setup dialog library

ISOCCRON\IFRCRON IFR scan setup dialog library

ISOCCRON\ROTCRON Rotator scan setup dialog library

ISOCCRON\SECRON Spectrum Explorer scan setup dialog library

ISOCCRON\SMHCRON SMH scan setup dialog library

ISOCCRON\SNDCRON Background audio recording setup dialog library

ISOCCRON\TCKCRON TCK filter scan setup dialog library

ISOCGPS GPS monitoring utility

ISOCInstrument The ISOCInstrument.DLL ActiveX control

ISOCLIB The ISOCLIB.DLL support library

ISOCMGR The ISOC Service Manager

ISOCNT The ISOC for Windows client application

ISOCNT\CRCSE CRC SE interactive support library

ISOCNT\DC44X DC44X interactive support library

ISOCNT\ESMB ESMB interactive support library

ISOCNT\FLEX FLEX interactive support library

ISOCNT\ICOM ICOM interactive support library

ISOCNT\ISOCUI ISOC user interface library

ISOCNT\RSFSP FSP interactive support library

ISOCNT\TBTCK TCK interactive support library

ISOCSCAN The ISOC background scanner service

ISOCSCAN\ANTSCAN Antenna scanner library

ISOCSCAN\DC4SCAN DC-44X tone decoder scanner library

ISOCSCAN\ESMBSCAN ESMB receiver scanner library

ISOCSCAN\ESNSCAN ESN receiver scanner library

ISOCSCAN\GPSSCAN GPS scanner library

ISOC for Windows Page 32

ISOCSCAN\ICOMSCAN ICOM receiver scanner library

ISOCSCAN\IFRSCAN IFR receiver scanner library

ISOCSCAN\ROTSCAN Rotator scanner library

ISOCSCAN\SESCAN Spectrum Explorer scanner library

ISOCSCAN\SMHSCAN SMH signal generator scanner library

ISOCSCAN\SNDSCAN Sound background recording library

ISOCSVC The main ISOC service

ISOCSVC\CIVSVC CI-V communications library

ISOCSVC\DF7SVC Doppler DDF 70001 communications library

ISOCSVC\GPIBSVC GPIB communications library

ISOCSVC\RS232SVC RS-232 communications library

ISOCSVC\RSIBSVC RSIB communications library

ISOCSVC\SOUNDSVC Sound communications library

ISOCSVC\TCPIPSVC TCP-IP communications library

LOG Logging library (not a project)

ROTCAL Calibration utility for the Antenna Rotator

SETUP Setup projects

SETUPEN English-language setup project

SETUPFR French-language setup project

Additionally, the following directories contain DF projects:

DFREG DF registry utility

ISOCCRON\DFCRON DF scheduler UI library

ISOCDF The ISOC DF application

ISOCLIB\DFLIB DF utility library

ISOCNT\DF DF user interface components

ISOCSCAN\DFSCAN DF scanner library

ISOCSCAN\GPSSCAN GPS scanner library

ISOCSCAN\OARSCAN OAR scanner library

ISOCSCAN\RSSCAN RS scanner library

ISOCSVC\DFSVC DF communications library

These project directories must be present at the same level in the directory tree hierarchy in order

for all components to compile correctly. (However, they can be in separate branches: e.g.,

ISOCNT for the main components, and ISOCDF for the DF components.) Additionally, the

following directories are required for compilation:

GPIB: GPIB library

GSM: GSM sound compression library

LOG: Logging functions

RSIB: RSIB library

ULAW: Additional sound compression libraries

ZLIB: Additional compression libraries

ISOC for Windows Page 33

Non-ISOC specific components include the following:

KNOBCTRL: The rotating "knob" control

LED: LED-like (7-segment) numerals (presently unused)

METER: V-U meter control

MULTISND: Sound mixer COM server

SCHEDULE: Weekly schedule grid control

Non-ISOC components are provided in precompiled form, and if recompilation is needed, must

be recompiled as per individual project instructions.

All ISOC and ISOCDF components can be compiled at once by rebuilding the “MASTER” and

“MASTER ISOCDF” projects. A build failure may occur during rebuild, but a repeated build

should be successful. In particular, it may be necessary to build “MASTER”, then “MASTER

ISOCDF”, and then “MASTER” again, to ensure that the setup toolkits pick up the most recently

compiled DF components.

Setup and Packaging

Rebuilding the “MASTER” and “MASTER ISOCDF” projects creates installation kits in the

form of MSI files. While these can be installed “as is”, a further requirement of the ISOC project

is to have password-protected executable installation executables.

Currently, these executables are created using the English-language x64 version of WinRAR

(version 3.93), to which the French-language UI library (Default-FR.SFX) has been added

manually, as per multilingual WinRAR setup instructions. The installation kits can be generated

by following these steps:

1. Start WinRAR and navigate to the folder where the desired MSI file is located;

2. Select MSI file

3. Click Add

4. Under General tab

a. Change extension to .exe

b. Check Create SFX archive (should be autochecked already)

5. Under Advanced tab

a. Click SFX options

i. Under General tab

1. Enter msi file name under Run after extraction

ii. Under Modes tab

1. Check Unpack to temporary folder

iii. Under Module tab

1. select Default-FR.SFX (for French installations only; module must

be preinstalled in WinRAR folder)

b. Click OK

c. Click Set password

i. Enter NewISOC

6. Click OK

